On monotonic solutions of an integral equation of Abel type
Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 407-420.

Voir la notice de l'article dans Czech Digital Mathematics Library

We present an existence theorem for monotonic solutions of a quadratic integral equation of Abel type in $C[0,1]$. The famous Chandrasekhar's integral equation is considered as a special case. The concept of measure of noncompactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof.
DOI : 10.21136/MB.2008.140629
Classification : 45G05, 45G10, 45M99, 47H09
Mots-clés : quadratic integral equation; monotonic solutions; Abel; measure of noncompactness; Darbo's fixed point theorem
@article{10_21136_MB_2008_140629,
     author = {Darwish, Mohamed Abdalla},
     title = {On monotonic solutions of an integral equation of {Abel} type},
     journal = {Mathematica Bohemica},
     pages = {407--420},
     publisher = {mathdoc},
     volume = {133},
     number = {4},
     year = {2008},
     doi = {10.21136/MB.2008.140629},
     mrnumber = {2472488},
     zbl = {1199.45014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140629/}
}
TY  - JOUR
AU  - Darwish, Mohamed Abdalla
TI  - On monotonic solutions of an integral equation of Abel type
JO  - Mathematica Bohemica
PY  - 2008
SP  - 407
EP  - 420
VL  - 133
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140629/
DO  - 10.21136/MB.2008.140629
LA  - en
ID  - 10_21136_MB_2008_140629
ER  - 
%0 Journal Article
%A Darwish, Mohamed Abdalla
%T On monotonic solutions of an integral equation of Abel type
%J Mathematica Bohemica
%D 2008
%P 407-420
%V 133
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140629/
%R 10.21136/MB.2008.140629
%G en
%F 10_21136_MB_2008_140629
Darwish, Mohamed Abdalla. On monotonic solutions of an integral equation of Abel type. Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 407-420. doi : 10.21136/MB.2008.140629. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140629/

Cité par Sources :