On upper traceable numbers of graphs
Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 389-405.

Voir la notice de l'article dans Czech Digital Mathematics Library

For a connected graph G of order n2 and a linear ordering s:v1,v2,,vn of vertices of G, d(s)=i=1n1d(vi,vi+1), where d(vi,vi+1) is the distance between vi and vi+1. The upper traceable number t+(G) of G is t+(G)=max{d(s)}, where the maximum is taken over all linear orderings s of vertices of G. It is known that if T is a tree of order n3, then 2n3t+(T)n2/21 and t+(T)n2/23 if TPn. All pairs n,k for which there exists a tree T of order n and t+(T)=k are determined and a characterization of all those trees of order n4 with upper traceable number n2/23 is established. For a connected graph G of order n3, it is known that n1t+(G)n2/21. We investigate the problem of determining possible pairs n,k of positive integers that are realizable as the order and upper traceable number of some connected graph.
DOI : 10.21136/MB.2008.140628
Classification : 05C12, 05C45
Mots-clés : traceable graph; traceable number; upper traceable number
@article{10_21136_MB_2008_140628,
     author = {Okamoto, Futaba and Zhang, Ping},
     title = {On upper traceable numbers of graphs},
     journal = {Mathematica Bohemica},
     pages = {389--405},
     publisher = {mathdoc},
     volume = {133},
     number = {4},
     year = {2008},
     doi = {10.21136/MB.2008.140628},
     mrnumber = {2472487},
     zbl = {1199.05095},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140628/}
}
TY  - JOUR
AU  - Okamoto, Futaba
AU  - Zhang, Ping
TI  - On upper traceable numbers of graphs
JO  - Mathematica Bohemica
PY  - 2008
SP  - 389
EP  - 405
VL  - 133
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140628/
DO  - 10.21136/MB.2008.140628
LA  - en
ID  - 10_21136_MB_2008_140628
ER  - 
%0 Journal Article
%A Okamoto, Futaba
%A Zhang, Ping
%T On upper traceable numbers of graphs
%J Mathematica Bohemica
%D 2008
%P 389-405
%V 133
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140628/
%R 10.21136/MB.2008.140628
%G en
%F 10_21136_MB_2008_140628
Okamoto, Futaba; Zhang, Ping. On upper traceable numbers of graphs. Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 389-405. doi : 10.21136/MB.2008.140628. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140628/

Cité par Sources :