Tribonacci modulo $2^t$ and $11^t$
Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 377-387.
Voir la notice de l'article dans Czech Digital Mathematics Library
Our previous research was devoted to the problem of determining the primitive periods of the sequences $(G_n\mod p^t)_{n=1}^{\infty }$ where $(G_n)_{n=1}^{\infty }$ is a Tribonacci sequence defined by an arbitrary triple of integers. The solution to this problem was found for the case of powers of an arbitrary prime $p\ne 2,11$. In this paper, which could be seen as a completion of our preceding investigation, we find solution for the case of singular primes $p=2,11$.
DOI :
10.21136/MB.2008.140627
Classification :
11B39, 11B50
Mots-clés : Tribonacci; modular periodicity; periodic sequence
Mots-clés : Tribonacci; modular periodicity; periodic sequence
@article{10_21136_MB_2008_140627, author = {Kla\v{s}ka, Ji\v{r}{\'\i}}, title = {Tribonacci modulo $2^t$ and $11^t$}, journal = {Mathematica Bohemica}, pages = {377--387}, publisher = {mathdoc}, volume = {133}, number = {4}, year = {2008}, doi = {10.21136/MB.2008.140627}, mrnumber = {2472486}, zbl = {1174.11022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140627/} }
Klaška, Jiří. Tribonacci modulo $2^t$ and $11^t$. Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 377-387. doi : 10.21136/MB.2008.140627. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140627/
Cité par Sources :