Tribonacci modulo $2^t$ and $11^t$
Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 377-387.

Voir la notice de l'article dans Czech Digital Mathematics Library

Our previous research was devoted to the problem of determining the primitive periods of the sequences $(G_n\mod p^t)_{n=1}^{\infty }$ where $(G_n)_{n=1}^{\infty }$ is a Tribonacci sequence defined by an arbitrary triple of integers. The solution to this problem was found for the case of powers of an arbitrary prime $p\ne 2,11$. In this paper, which could be seen as a completion of our preceding investigation, we find solution for the case of singular primes $p=2,11$.
DOI : 10.21136/MB.2008.140627
Classification : 11B39, 11B50
Mots-clés : Tribonacci; modular periodicity; periodic sequence
@article{10_21136_MB_2008_140627,
     author = {Kla\v{s}ka, Ji\v{r}{\'\i}},
     title = {Tribonacci modulo $2^t$ and $11^t$},
     journal = {Mathematica Bohemica},
     pages = {377--387},
     publisher = {mathdoc},
     volume = {133},
     number = {4},
     year = {2008},
     doi = {10.21136/MB.2008.140627},
     mrnumber = {2472486},
     zbl = {1174.11022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140627/}
}
TY  - JOUR
AU  - Klaška, Jiří
TI  - Tribonacci modulo $2^t$ and $11^t$
JO  - Mathematica Bohemica
PY  - 2008
SP  - 377
EP  - 387
VL  - 133
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140627/
DO  - 10.21136/MB.2008.140627
LA  - en
ID  - 10_21136_MB_2008_140627
ER  - 
%0 Journal Article
%A Klaška, Jiří
%T Tribonacci modulo $2^t$ and $11^t$
%J Mathematica Bohemica
%D 2008
%P 377-387
%V 133
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140627/
%R 10.21136/MB.2008.140627
%G en
%F 10_21136_MB_2008_140627
Klaška, Jiří. Tribonacci modulo $2^t$ and $11^t$. Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 377-387. doi : 10.21136/MB.2008.140627. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140627/

Cité par Sources :