Tribonacci modulo 2t and 11t
Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 377-387.

Voir la notice de l'article dans Czech Digital Mathematics Library

Our previous research was devoted to the problem of determining the primitive periods of the sequences (Gnmodpt)n=1 where (Gn)n=1 is a Tribonacci sequence defined by an arbitrary triple of integers. The solution to this problem was found for the case of powers of an arbitrary prime p2,11. In this paper, which could be seen as a completion of our preceding investigation, we find solution for the case of singular primes p=2,11.
DOI : 10.21136/MB.2008.140627
Classification : 11B39, 11B50
Mots-clés : Tribonacci; modular periodicity; periodic sequence
@article{10_21136_MB_2008_140627,
     author = {Kla\v{s}ka, Ji\v{r}{\'\i}},
     title = {Tribonacci modulo $2^t$ and $11^t$},
     journal = {Mathematica Bohemica},
     pages = {377--387},
     publisher = {mathdoc},
     volume = {133},
     number = {4},
     year = {2008},
     doi = {10.21136/MB.2008.140627},
     mrnumber = {2472486},
     zbl = {1174.11022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140627/}
}
TY  - JOUR
AU  - Klaška, Jiří
TI  - Tribonacci modulo $2^t$ and $11^t$
JO  - Mathematica Bohemica
PY  - 2008
SP  - 377
EP  - 387
VL  - 133
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140627/
DO  - 10.21136/MB.2008.140627
LA  - en
ID  - 10_21136_MB_2008_140627
ER  - 
%0 Journal Article
%A Klaška, Jiří
%T Tribonacci modulo $2^t$ and $11^t$
%J Mathematica Bohemica
%D 2008
%P 377-387
%V 133
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140627/
%R 10.21136/MB.2008.140627
%G en
%F 10_21136_MB_2008_140627
Klaška, Jiří. Tribonacci modulo $2^t$ and $11^t$. Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 377-387. doi : 10.21136/MB.2008.140627. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140627/

Cité par Sources :