On the Frobenius number of a modular Diophantine inequality
Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 367-375.
Voir la notice de l'article dans Czech Digital Mathematics Library
We present an algorithm for computing the greatest integer that is not a solution of the modular Diophantine inequality $ax \mod b\leq x$, with complexity similar to the complexity of the Euclid algorithm for computing the greatest common divisor of two integers.
DOI :
10.21136/MB.2008.140626
Classification :
11D75, 20M14
Mots-clés : numerical semigroup; Diophantine inequality; Frobenius number; multiplicity
Mots-clés : numerical semigroup; Diophantine inequality; Frobenius number; multiplicity
@article{10_21136_MB_2008_140626, author = {Rosales, J. C. and Vasco, P.}, title = {On the {Frobenius} number of a modular {Diophantine} inequality}, journal = {Mathematica Bohemica}, pages = {367--375}, publisher = {mathdoc}, volume = {133}, number = {4}, year = {2008}, doi = {10.21136/MB.2008.140626}, mrnumber = {2472485}, zbl = {1174.11046}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140626/} }
TY - JOUR AU - Rosales, J. C. AU - Vasco, P. TI - On the Frobenius number of a modular Diophantine inequality JO - Mathematica Bohemica PY - 2008 SP - 367 EP - 375 VL - 133 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140626/ DO - 10.21136/MB.2008.140626 LA - en ID - 10_21136_MB_2008_140626 ER -
%0 Journal Article %A Rosales, J. C. %A Vasco, P. %T On the Frobenius number of a modular Diophantine inequality %J Mathematica Bohemica %D 2008 %P 367-375 %V 133 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140626/ %R 10.21136/MB.2008.140626 %G en %F 10_21136_MB_2008_140626
Rosales, J. C.; Vasco, P. On the Frobenius number of a modular Diophantine inequality. Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 367-375. doi : 10.21136/MB.2008.140626. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140626/
Cité par Sources :