On the Frobenius number of a modular Diophantine inequality
Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 367-375.

Voir la notice de l'article dans Czech Digital Mathematics Library

We present an algorithm for computing the greatest integer that is not a solution of the modular Diophantine inequality $ax \mod b\leq x$, with complexity similar to the complexity of the Euclid algorithm for computing the greatest common divisor of two integers.
DOI : 10.21136/MB.2008.140626
Classification : 11D75, 20M14
Mots-clés : numerical semigroup; Diophantine inequality; Frobenius number; multiplicity
@article{10_21136_MB_2008_140626,
     author = {Rosales, J. C. and Vasco, P.},
     title = {On the {Frobenius} number of a modular {Diophantine} inequality},
     journal = {Mathematica Bohemica},
     pages = {367--375},
     publisher = {mathdoc},
     volume = {133},
     number = {4},
     year = {2008},
     doi = {10.21136/MB.2008.140626},
     mrnumber = {2472485},
     zbl = {1174.11046},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140626/}
}
TY  - JOUR
AU  - Rosales, J. C.
AU  - Vasco, P.
TI  - On the Frobenius number of a modular Diophantine inequality
JO  - Mathematica Bohemica
PY  - 2008
SP  - 367
EP  - 375
VL  - 133
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140626/
DO  - 10.21136/MB.2008.140626
LA  - en
ID  - 10_21136_MB_2008_140626
ER  - 
%0 Journal Article
%A Rosales, J. C.
%A Vasco, P.
%T On the Frobenius number of a modular Diophantine inequality
%J Mathematica Bohemica
%D 2008
%P 367-375
%V 133
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140626/
%R 10.21136/MB.2008.140626
%G en
%F 10_21136_MB_2008_140626
Rosales, J. C.; Vasco, P. On the Frobenius number of a modular Diophantine inequality. Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 367-375. doi : 10.21136/MB.2008.140626. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140626/

Cité par Sources :