Morse-Sard theorem for delta-convex curves
Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 337-340.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $f\colon I\to X$ be a delta-convex mapping, where $I\subset \mathbb R $ is an open interval and $X$ a Banach space. Let $C_f$ be the set of critical points of $f$. We prove that $f(C_f)$ has zero $1/2$-dimensional Hausdorff measure.
DOI : 10.21136/MB.2008.140622
Classification : 26A51
Mots-clés : Morse-Sard theorem; delta-convex mapping
@article{10_21136_MB_2008_140622,
     author = {Pavlica, D.},
     title = {Morse-Sard theorem for delta-convex curves},
     journal = {Mathematica Bohemica},
     pages = {337--340},
     publisher = {mathdoc},
     volume = {133},
     number = {4},
     year = {2008},
     doi = {10.21136/MB.2008.140622},
     mrnumber = {2472482},
     zbl = {1199.26037},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140622/}
}
TY  - JOUR
AU  - Pavlica, D.
TI  - Morse-Sard theorem for delta-convex curves
JO  - Mathematica Bohemica
PY  - 2008
SP  - 337
EP  - 340
VL  - 133
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140622/
DO  - 10.21136/MB.2008.140622
LA  - en
ID  - 10_21136_MB_2008_140622
ER  - 
%0 Journal Article
%A Pavlica, D.
%T Morse-Sard theorem for delta-convex curves
%J Mathematica Bohemica
%D 2008
%P 337-340
%V 133
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140622/
%R 10.21136/MB.2008.140622
%G en
%F 10_21136_MB_2008_140622
Pavlica, D. Morse-Sard theorem for delta-convex curves. Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 337-340. doi : 10.21136/MB.2008.140622. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140622/

Cité par Sources :