Morse-Sard theorem for delta-convex curves
Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 337-340.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $f\colon I\to X$ be a delta-convex mapping, where $I\subset \mathbb R $ is an open interval and $X$ a Banach space. Let $C_f$ be the set of critical points of $f$. We prove that $f(C_f)$ has zero $1/2$-dimensional Hausdorff measure.
DOI :
10.21136/MB.2008.140622
Classification :
26A51
Mots-clés : Morse-Sard theorem; delta-convex mapping
Mots-clés : Morse-Sard theorem; delta-convex mapping
@article{10_21136_MB_2008_140622, author = {Pavlica, D.}, title = {Morse-Sard theorem for delta-convex curves}, journal = {Mathematica Bohemica}, pages = {337--340}, publisher = {mathdoc}, volume = {133}, number = {4}, year = {2008}, doi = {10.21136/MB.2008.140622}, mrnumber = {2472482}, zbl = {1199.26037}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140622/} }
TY - JOUR AU - Pavlica, D. TI - Morse-Sard theorem for delta-convex curves JO - Mathematica Bohemica PY - 2008 SP - 337 EP - 340 VL - 133 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140622/ DO - 10.21136/MB.2008.140622 LA - en ID - 10_21136_MB_2008_140622 ER -
Pavlica, D. Morse-Sard theorem for delta-convex curves. Mathematica Bohemica, Tome 133 (2008) no. 4, pp. 337-340. doi : 10.21136/MB.2008.140622. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140622/
Cité par Sources :