On vector functions of bounded convexity
Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 321-335.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $X$ be a normed linear space. We investigate properties of vector functions $F\colon [a,b] \to X$ of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity $K_a^b F$ is equal to the variation of $F'_+$ on $[a,b)$. As an application, we give a simple alternative proof of an unpublished result of the first author, containing an estimate of convexity of a composed mapping.
DOI :
10.21136/MB.2008.140621
Classification :
26A99, 47H99
Mots-clés : bounded convexity; delta-convex mapping; bounded variation; Banach space
Mots-clés : bounded convexity; delta-convex mapping; bounded variation; Banach space
@article{10_21136_MB_2008_140621, author = {Vesel\'y, Libor and Zaj{\'\i}\v{c}ek, Lud\v{e}k}, title = {On vector functions of bounded convexity}, journal = {Mathematica Bohemica}, pages = {321--335}, publisher = {mathdoc}, volume = {133}, number = {3}, year = {2008}, doi = {10.21136/MB.2008.140621}, mrnumber = {2494785}, zbl = {1199.47242}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140621/} }
TY - JOUR AU - Veselý, Libor AU - Zajíček, Luděk TI - On vector functions of bounded convexity JO - Mathematica Bohemica PY - 2008 SP - 321 EP - 335 VL - 133 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140621/ DO - 10.21136/MB.2008.140621 LA - en ID - 10_21136_MB_2008_140621 ER -
Veselý, Libor; Zajíček, Luděk. On vector functions of bounded convexity. Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 321-335. doi : 10.21136/MB.2008.140621. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140621/
Cité par Sources :