$G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $
Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 289-298.
Voir la notice de l'article dans Czech Digital Mathematics Library
There exist exactly four homomorphisms $\varphi $ from the pseudo-orthogonal group of index one $G=O( n,1,\mathbb R) $ into the group of real numbers $\mathbb R_0.$ Thus we have four $G$-spaces of $\varphi $-scalars $( \mathbb R,G,h_{\varphi }) $ in the geometry of the group $G.$ The group $G$ operates also on the sphere $S^{n-2}$ forming a $G$-space of isotropic directions $( S^{n-2},G,\ast ) .$ In this note, we have solved the functional equation $F( A\ast q_1,A\ast q_2,\dots ,A\ast q_m) =\varphi ( A) \cdot F( q_1,q_2,\dots ,q_m) $ for given independent points $q_1,q_2,\dots ,q_m\in S^{n-2}$ with $1\leq m\leq n$ and an arbitrary matrix $A\in G$ considering each of all four homomorphisms. Thereby\ we have determined all equivariant mappings $F\colon ( S^{n-2}) ^m\rightarrow \mathbb R.$
DOI :
10.21136/MB.2008.140618
Classification :
53A55
Mots-clés : $G$-space; equivariant map; pseudo-Euclidean geometry
Mots-clés : $G$-space; equivariant map; pseudo-Euclidean geometry
@article{10_21136_MB_2008_140618, author = {Misiak, Aleksander and Stasiak, Eugeniusz}, title = {$G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $}, journal = {Mathematica Bohemica}, pages = {289--298}, publisher = {mathdoc}, volume = {133}, number = {3}, year = {2008}, doi = {10.21136/MB.2008.140618}, mrnumber = {2494782}, zbl = {1199.53034}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140618/} }
TY - JOUR AU - Misiak, Aleksander AU - Stasiak, Eugeniusz TI - $G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $ JO - Mathematica Bohemica PY - 2008 SP - 289 EP - 298 VL - 133 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140618/ DO - 10.21136/MB.2008.140618 LA - en ID - 10_21136_MB_2008_140618 ER -
%0 Journal Article %A Misiak, Aleksander %A Stasiak, Eugeniusz %T $G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $ %J Mathematica Bohemica %D 2008 %P 289-298 %V 133 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140618/ %R 10.21136/MB.2008.140618 %G en %F 10_21136_MB_2008_140618
Misiak, Aleksander; Stasiak, Eugeniusz. $G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $. Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 289-298. doi : 10.21136/MB.2008.140618. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140618/
Cité par Sources :