G-space of isotropic directions and G-spaces of φ-scalars with G=O(n,1,R)
Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 289-298.

Voir la notice de l'article dans Czech Digital Mathematics Library

There exist exactly four homomorphisms φ from the pseudo-orthogonal group of index one G=O(n,1,R) into the group of real numbers R0. Thus we have four G-spaces of φ-scalars (R,G,hφ) in the geometry of the group G. The group G operates also on the sphere Sn2 forming a G-space of isotropic directions (Sn2,G,). In this note, we have solved the functional equation F(Aq1,Aq2,,Aqm)=φ(A)F(q1,q2,,qm) for given independent points q1,q2,,qmSn2 with 1mn and an arbitrary matrix AG considering each of all four homomorphisms. Thereby\ we have determined all equivariant mappings F:(Sn2)mR.
DOI : 10.21136/MB.2008.140618
Classification : 53A55
Mots-clés : G-space; equivariant map; pseudo-Euclidean geometry
@article{10_21136_MB_2008_140618,
     author = {Misiak, Aleksander and Stasiak, Eugeniusz},
     title = {$G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $},
     journal = {Mathematica Bohemica},
     pages = {289--298},
     publisher = {mathdoc},
     volume = {133},
     number = {3},
     year = {2008},
     doi = {10.21136/MB.2008.140618},
     mrnumber = {2494782},
     zbl = {1199.53034},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140618/}
}
TY  - JOUR
AU  - Misiak, Aleksander
AU  - Stasiak, Eugeniusz
TI  - $G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $
JO  - Mathematica Bohemica
PY  - 2008
SP  - 289
EP  - 298
VL  - 133
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140618/
DO  - 10.21136/MB.2008.140618
LA  - en
ID  - 10_21136_MB_2008_140618
ER  - 
%0 Journal Article
%A Misiak, Aleksander
%A Stasiak, Eugeniusz
%T $G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $
%J Mathematica Bohemica
%D 2008
%P 289-298
%V 133
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140618/
%R 10.21136/MB.2008.140618
%G en
%F 10_21136_MB_2008_140618
Misiak, Aleksander; Stasiak, Eugeniusz. $G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $. Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 289-298. doi : 10.21136/MB.2008.140618. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140618/

Cité par Sources :