$G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $
Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 289-298.

Voir la notice de l'article dans Czech Digital Mathematics Library

There exist exactly four homomorphisms $\varphi $ from the pseudo-orthogonal group of index one $G=O( n,1,\mathbb R) $ into the group of real numbers $\mathbb R_0.$ Thus we have four $G$-spaces of $\varphi $-scalars $( \mathbb R,G,h_{\varphi }) $ in the geometry of the group $G.$ The group $G$ operates also on the sphere $S^{n-2}$ forming a $G$-space of isotropic directions $( S^{n-2},G,\ast ) .$ In this note, we have solved the functional equation $F( A\ast q_1,A\ast q_2,\dots ,A\ast q_m) =\varphi ( A) \cdot F( q_1,q_2,\dots ,q_m) $ for given independent points $q_1,q_2,\dots ,q_m\in S^{n-2}$ with $1\leq m\leq n$ and an arbitrary matrix $A\in G$ considering each of all four homomorphisms. Thereby\ we have determined all equivariant mappings $F\colon ( S^{n-2}) ^m\rightarrow \mathbb R.$
DOI : 10.21136/MB.2008.140618
Classification : 53A55
Mots-clés : $G$-space; equivariant map; pseudo-Euclidean geometry
@article{10_21136_MB_2008_140618,
     author = {Misiak, Aleksander and Stasiak, Eugeniusz},
     title = {$G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $},
     journal = {Mathematica Bohemica},
     pages = {289--298},
     publisher = {mathdoc},
     volume = {133},
     number = {3},
     year = {2008},
     doi = {10.21136/MB.2008.140618},
     mrnumber = {2494782},
     zbl = {1199.53034},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140618/}
}
TY  - JOUR
AU  - Misiak, Aleksander
AU  - Stasiak, Eugeniusz
TI  - $G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $
JO  - Mathematica Bohemica
PY  - 2008
SP  - 289
EP  - 298
VL  - 133
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140618/
DO  - 10.21136/MB.2008.140618
LA  - en
ID  - 10_21136_MB_2008_140618
ER  - 
%0 Journal Article
%A Misiak, Aleksander
%A Stasiak, Eugeniusz
%T $G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $
%J Mathematica Bohemica
%D 2008
%P 289-298
%V 133
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140618/
%R 10.21136/MB.2008.140618
%G en
%F 10_21136_MB_2008_140618
Misiak, Aleksander; Stasiak, Eugeniusz. $G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $. Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 289-298. doi : 10.21136/MB.2008.140618. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140618/

Cité par Sources :