Tribonacci modulo $p^t$
Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 267-288.

Voir la notice de l'article dans Czech Digital Mathematics Library

Our research was inspired by the relations between the primitive periods of sequences obtained by reducing Tribonacci sequence by a given prime modulus $p$ and by its powers $p^t$, which were deduced by M. E. Waddill. In this paper we derive similar results for the case of a Tribonacci sequence that starts with an arbitrary triple of integers.
DOI : 10.21136/MB.2008.140617
Classification : 11B39, 11B50
Mots-clés : Tribonacci; modular periodicity; periodic sequence
@article{10_21136_MB_2008_140617,
     author = {Kla\v{s}ka, Ji\v{r}{\'\i}},
     title = {Tribonacci modulo $p^t$},
     journal = {Mathematica Bohemica},
     pages = {267--288},
     publisher = {mathdoc},
     volume = {133},
     number = {3},
     year = {2008},
     doi = {10.21136/MB.2008.140617},
     mrnumber = {2494781},
     zbl = {1174.11021},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140617/}
}
TY  - JOUR
AU  - Klaška, Jiří
TI  - Tribonacci modulo $p^t$
JO  - Mathematica Bohemica
PY  - 2008
SP  - 267
EP  - 288
VL  - 133
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140617/
DO  - 10.21136/MB.2008.140617
LA  - en
ID  - 10_21136_MB_2008_140617
ER  - 
%0 Journal Article
%A Klaška, Jiří
%T Tribonacci modulo $p^t$
%J Mathematica Bohemica
%D 2008
%P 267-288
%V 133
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140617/
%R 10.21136/MB.2008.140617
%G en
%F 10_21136_MB_2008_140617
Klaška, Jiří. Tribonacci modulo $p^t$. Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 267-288. doi : 10.21136/MB.2008.140617. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140617/

Cité par Sources :