On $\Cal C$-starcompact spaces
Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 259-266.
Voir la notice de l'article dans Czech Digital Mathematics Library
A space $X$ is {\it $\Cal C$-starcompact} if for every open cover $\Cal U$ of $X,$ there exists a countably compact subset $C$ of $X$ such that $\mathop{\rm St}(C,{\Cal U})=X.$ In this paper we investigate the relations between $\Cal C$-starcompact spaces and other related spaces, and also study topological properties of $\Cal C$-starcompact spaces.
DOI :
10.21136/MB.2008.140616
Classification :
54D20, 54D55
Mots-clés : compact space; countably compact space; Lindelöf space; $\Cal K$-starcompact space; $\Cal C$-starcompact space; $\Cal L$-starcompact space
Mots-clés : compact space; countably compact space; Lindelöf space; $\Cal K$-starcompact space; $\Cal C$-starcompact space; $\Cal L$-starcompact space
@article{10_21136_MB_2008_140616, author = {Song, Yan-Kui}, title = {On $\Cal C$-starcompact spaces}, journal = {Mathematica Bohemica}, pages = {259--266}, publisher = {mathdoc}, volume = {133}, number = {3}, year = {2008}, doi = {10.21136/MB.2008.140616}, mrnumber = {2494780}, zbl = {1199.54146}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140616/} }
Song, Yan-Kui. On $\Cal C$-starcompact spaces. Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 259-266. doi : 10.21136/MB.2008.140616. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140616/
Cité par Sources :