Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type
Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 247-258.
Voir la notice de l'article dans Czech Digital Mathematics Library
In the paper we consider the difference equation of neutral type $$ \Delta ^{3}[x(n)-p(n)x(\sigma (n))] + q(n)f(x(\tau (n)))=0, \quad n \in \Bbb N (n_0), $$ where $p,q\colon\Bbb N(n_0)\rightarrow \Bbb R_+$; $\sigma , \tau \colon\Bbb N\rightarrow \Bbb Z$, $\sigma $ is strictly increasing and $\lim \limits _{n \rightarrow \infty }\sigma (n)=\infty ;$ $\tau $ is nondecreasing and $\lim \limits _{n \rightarrow \infty }\tau (n)=\infty $, $f\colon\Bbb R\rightarrow {\Bbb R}$, $xf(x)>0$. We examine the following two cases: \[ 0(n)\leq \lambda ^* 1,\quad \sigma (n)=n-k,\quad \tau (n)=n-l, \] and \[1\lambda _*\leq p(n),\quad \sigma (n)=n+k,\quad \tau (n)=n+l,\] where $k$, $l$ are positive integers. We obtain sufficient conditions under which all nonoscillatory solutions of the above equation tend to zero as $n\rightarrow \infty $ with a weaker assumption on $q$ than the usual assumption $\sum \limits _{i=n_0}^{\infty }q(i)=\infty $ that is used in literature.
DOI :
10.21136/MB.2008.140615
Classification :
34K40, 39A10, 39A12, 39A21, 39A22
Mots-clés : neutral type difference equation; third order difference equation; nonoscillatory solutions; asymptotic behavior
Mots-clés : neutral type difference equation; third order difference equation; nonoscillatory solutions; asymptotic behavior
@article{10_21136_MB_2008_140615, author = {Andruch-Sobi{\l}o, Anna and Drozdowicz, Andrzej}, title = {Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type}, journal = {Mathematica Bohemica}, pages = {247--258}, publisher = {mathdoc}, volume = {133}, number = {3}, year = {2008}, doi = {10.21136/MB.2008.140615}, mrnumber = {2494779}, zbl = {1199.39022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140615/} }
TY - JOUR AU - Andruch-Sobiło, Anna AU - Drozdowicz, Andrzej TI - Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type JO - Mathematica Bohemica PY - 2008 SP - 247 EP - 258 VL - 133 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140615/ DO - 10.21136/MB.2008.140615 LA - en ID - 10_21136_MB_2008_140615 ER -
%0 Journal Article %A Andruch-Sobiło, Anna %A Drozdowicz, Andrzej %T Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type %J Mathematica Bohemica %D 2008 %P 247-258 %V 133 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140615/ %R 10.21136/MB.2008.140615 %G en %F 10_21136_MB_2008_140615
Andruch-Sobiło, Anna; Drozdowicz, Andrzej. Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type. Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 247-258. doi : 10.21136/MB.2008.140615. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140615/
Cité par Sources :