Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type
Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 247-258.

Voir la notice de l'article dans Czech Digital Mathematics Library

In the paper we consider the difference equation of neutral type $$ \Delta ^{3}[x(n)-p(n)x(\sigma (n))] + q(n)f(x(\tau (n)))=0, \quad n \in \Bbb N (n_0), $$ where $p,q\colon\Bbb N(n_0)\rightarrow \Bbb R_+$; $\sigma , \tau \colon\Bbb N\rightarrow \Bbb Z$, $\sigma $ is strictly increasing and $\lim \limits _{n \rightarrow \infty }\sigma (n)=\infty ;$ $\tau $ is nondecreasing and $\lim \limits _{n \rightarrow \infty }\tau (n)=\infty $, $f\colon\Bbb R\rightarrow {\Bbb R}$, $xf(x)>0$. We examine the following two cases: \[ 0(n)\leq \lambda ^* 1,\quad \sigma (n)=n-k,\quad \tau (n)=n-l, \] and \[1\lambda _*\leq p(n),\quad \sigma (n)=n+k,\quad \tau (n)=n+l,\] where $k$, $l$ are positive integers. We obtain sufficient conditions under which all nonoscillatory solutions of the above equation tend to zero as $n\rightarrow \infty $ with a weaker assumption on $q$ than the usual assumption $\sum \limits _{i=n_0}^{\infty }q(i)=\infty $ that is used in literature.
DOI : 10.21136/MB.2008.140615
Classification : 34K40, 39A10, 39A12, 39A21, 39A22
Mots-clés : neutral type difference equation; third order difference equation; nonoscillatory solutions; asymptotic behavior
@article{10_21136_MB_2008_140615,
     author = {Andruch-Sobi{\l}o, Anna and Drozdowicz, Andrzej},
     title = {Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type},
     journal = {Mathematica Bohemica},
     pages = {247--258},
     publisher = {mathdoc},
     volume = {133},
     number = {3},
     year = {2008},
     doi = {10.21136/MB.2008.140615},
     mrnumber = {2494779},
     zbl = {1199.39022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140615/}
}
TY  - JOUR
AU  - Andruch-Sobiło, Anna
AU  - Drozdowicz, Andrzej
TI  - Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type
JO  - Mathematica Bohemica
PY  - 2008
SP  - 247
EP  - 258
VL  - 133
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140615/
DO  - 10.21136/MB.2008.140615
LA  - en
ID  - 10_21136_MB_2008_140615
ER  - 
%0 Journal Article
%A Andruch-Sobiło, Anna
%A Drozdowicz, Andrzej
%T Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type
%J Mathematica Bohemica
%D 2008
%P 247-258
%V 133
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140615/
%R 10.21136/MB.2008.140615
%G en
%F 10_21136_MB_2008_140615
Andruch-Sobiło, Anna; Drozdowicz, Andrzej. Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type. Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 247-258. doi : 10.21136/MB.2008.140615. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140615/

Cité par Sources :