Voir la notice de l'article dans Czech Digital Mathematics Library
@article{10_21136_MB_2008_140612, author = {Zayed, E. M. E. and El-Moneam, M. A.}, title = {On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $}, journal = {Mathematica Bohemica}, pages = {225--239}, publisher = {mathdoc}, volume = {133}, number = {3}, year = {2008}, doi = {10.21136/MB.2008.140612}, mrnumber = {2494777}, zbl = {1199.39025}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140612/} }
TY - JOUR AU - Zayed, E. M. E. AU - El-Moneam, M. A. TI - On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $ JO - Mathematica Bohemica PY - 2008 SP - 225 EP - 239 VL - 133 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140612/ DO - 10.21136/MB.2008.140612 LA - en ID - 10_21136_MB_2008_140612 ER -
%0 Journal Article %A Zayed, E. M. E. %A El-Moneam, M. A. %T On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $ %J Mathematica Bohemica %D 2008 %P 225-239 %V 133 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140612/ %R 10.21136/MB.2008.140612 %G en %F 10_21136_MB_2008_140612
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $. Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 225-239. doi : 10.21136/MB.2008.140612. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140612/
Cité par Sources :