On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $
Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 225-239.
Voir la notice de l'article dans Czech Digital Mathematics Library
The main objective of this paper is to study the boundedness character, the periodic character, the convergence and the global stability of positive solutions of the difference equation \[ x_{n+1}=\bigg ( A+\sum _{i=0}^k\alpha _ix_{n-i}\bigg ) \Big / \sum _{i=0}^k\beta _ix_{n-i},\ \ n=0,1,2,\dots \] where the coefficients $A$, $\alpha _i$, $\beta _i$ and the initial conditions $x_{-k},x_{-k+1},\dots ,x_{-1},x_0$ are positive real numbers, while $k$ is a positive integer number.
DOI :
10.21136/MB.2008.140612
Classification :
34C99, 39A10, 39A11, 39A20, 39A22, 39A23, 39A30, 39A99
Mots-clés : difference equations; boundedness character; period two solution; convergence; global stability
Mots-clés : difference equations; boundedness character; period two solution; convergence; global stability
@article{10_21136_MB_2008_140612, author = {Zayed, E. M. E. and El-Moneam, M. A.}, title = {On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $}, journal = {Mathematica Bohemica}, pages = {225--239}, publisher = {mathdoc}, volume = {133}, number = {3}, year = {2008}, doi = {10.21136/MB.2008.140612}, mrnumber = {2494777}, zbl = {1199.39025}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140612/} }
TY - JOUR AU - Zayed, E. M. E. AU - El-Moneam, M. A. TI - On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $ JO - Mathematica Bohemica PY - 2008 SP - 225 EP - 239 VL - 133 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140612/ DO - 10.21136/MB.2008.140612 LA - en ID - 10_21136_MB_2008_140612 ER -
%0 Journal Article %A Zayed, E. M. E. %A El-Moneam, M. A. %T On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $ %J Mathematica Bohemica %D 2008 %P 225-239 %V 133 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140612/ %R 10.21136/MB.2008.140612 %G en %F 10_21136_MB_2008_140612
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $. Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 225-239. doi : 10.21136/MB.2008.140612. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.140612/
Cité par Sources :