A note on the $a$-Browder’s and $a$-Weyl’s theorems
Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 157-166.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $T$ be a Banach space operator. In this paper we characterize $a$-Browder’s theorem for $T$ by the localized single valued extension property. Also, we characterize $a$-Weyl’s theorem under the condition $E^a(T)=\pi ^a(T),$ where $E^a(T)$ is the set of all eigenvalues of $T$ which are isolated in the approximate point spectrum and $\pi ^a(T)$ is the set of all left poles of $T.$ Some applications are also given.
DOI :
10.21136/MB.2008.134059
Classification :
47A10, 47A11, 47A53
Mots-clés : B-Fredholm operator; Weyl’s theorem; Browder’s thoerem; operator of Kato type; single-valued extension property
Mots-clés : B-Fredholm operator; Weyl’s theorem; Browder’s thoerem; operator of Kato type; single-valued extension property
@article{10_21136_MB_2008_134059, author = {Amouch, M. and Zguitti, H.}, title = {A note on the $a${-Browder{\textquoteright}s} and $a${-Weyl{\textquoteright}s} theorems}, journal = {Mathematica Bohemica}, pages = {157--166}, publisher = {mathdoc}, volume = {133}, number = {2}, year = {2008}, doi = {10.21136/MB.2008.134059}, mrnumber = {2428311}, zbl = {1199.47067}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134059/} }
TY - JOUR AU - Amouch, M. AU - Zguitti, H. TI - A note on the $a$-Browder’s and $a$-Weyl’s theorems JO - Mathematica Bohemica PY - 2008 SP - 157 EP - 166 VL - 133 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134059/ DO - 10.21136/MB.2008.134059 LA - en ID - 10_21136_MB_2008_134059 ER -
Amouch, M.; Zguitti, H. A note on the $a$-Browder’s and $a$-Weyl’s theorems. Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 157-166. doi : 10.21136/MB.2008.134059. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134059/
Cité par Sources :