A note on the $a$-Browder’s and $a$-Weyl’s theorems
Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 157-166.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $T$ be a Banach space operator. In this paper we characterize $a$-Browder’s theorem for $T$ by the localized single valued extension property. Also, we characterize $a$-Weyl’s theorem under the condition $E^a(T)=\pi ^a(T),$ where $E^a(T)$ is the set of all eigenvalues of $T$ which are isolated in the approximate point spectrum and $\pi ^a(T)$ is the set of all left poles of $T.$ Some applications are also given.
DOI : 10.21136/MB.2008.134059
Classification : 47A10, 47A11, 47A53
Mots-clés : B-Fredholm operator; Weyl’s theorem; Browder’s thoerem; operator of Kato type; single-valued extension property
@article{10_21136_MB_2008_134059,
     author = {Amouch, M. and Zguitti, H.},
     title = {A note on the $a${-Browder{\textquoteright}s} and $a${-Weyl{\textquoteright}s} theorems},
     journal = {Mathematica Bohemica},
     pages = {157--166},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2008},
     doi = {10.21136/MB.2008.134059},
     mrnumber = {2428311},
     zbl = {1199.47067},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134059/}
}
TY  - JOUR
AU  - Amouch, M.
AU  - Zguitti, H.
TI  - A note on the $a$-Browder’s and $a$-Weyl’s theorems
JO  - Mathematica Bohemica
PY  - 2008
SP  - 157
EP  - 166
VL  - 133
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134059/
DO  - 10.21136/MB.2008.134059
LA  - en
ID  - 10_21136_MB_2008_134059
ER  - 
%0 Journal Article
%A Amouch, M.
%A Zguitti, H.
%T A note on the $a$-Browder’s and $a$-Weyl’s theorems
%J Mathematica Bohemica
%D 2008
%P 157-166
%V 133
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134059/
%R 10.21136/MB.2008.134059
%G en
%F 10_21136_MB_2008_134059
Amouch, M.; Zguitti, H. A note on the $a$-Browder’s and $a$-Weyl’s theorems. Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 157-166. doi : 10.21136/MB.2008.134059. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134059/

Cité par Sources :