Domination with respect to nondegenerate and hereditary properties
Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 167-178.
Voir la notice de l'article dans Czech Digital Mathematics Library
For a graphical property $\mathcal{P}$ and a graph $G$, a subset $S$ of vertices of $G$ is a $\mathcal{P}$-set if the subgraph induced by $S$ has the property $\mathcal{P}$. The domination number with respect to the property $\mathcal{P}$, is the minimum cardinality of a dominating $\mathcal{P}$-set. In this paper we present results on changing and unchanging of the domination number with respect to the nondegenerate and hereditary properties when a graph is modified by adding an edge or deleting a vertex.
DOI :
10.21136/MB.2008.134058
Classification :
05C69
Mots-clés : domination; independent domination; acyclic domination; good vertex; bad vertex; fixed vertex; free vertex; hereditary graph property; induced-hereditary graph property; nondegenerate graph property; additive graph property
Mots-clés : domination; independent domination; acyclic domination; good vertex; bad vertex; fixed vertex; free vertex; hereditary graph property; induced-hereditary graph property; nondegenerate graph property; additive graph property
@article{10_21136_MB_2008_134058, author = {Samodivkin, Vladimir}, title = {Domination with respect to nondegenerate and hereditary properties}, journal = {Mathematica Bohemica}, pages = {167--178}, publisher = {mathdoc}, volume = {133}, number = {2}, year = {2008}, doi = {10.21136/MB.2008.134058}, mrnumber = {2428312}, zbl = {1199.05269}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134058/} }
TY - JOUR AU - Samodivkin, Vladimir TI - Domination with respect to nondegenerate and hereditary properties JO - Mathematica Bohemica PY - 2008 SP - 167 EP - 178 VL - 133 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134058/ DO - 10.21136/MB.2008.134058 LA - en ID - 10_21136_MB_2008_134058 ER -
%0 Journal Article %A Samodivkin, Vladimir %T Domination with respect to nondegenerate and hereditary properties %J Mathematica Bohemica %D 2008 %P 167-178 %V 133 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134058/ %R 10.21136/MB.2008.134058 %G en %F 10_21136_MB_2008_134058
Samodivkin, Vladimir. Domination with respect to nondegenerate and hereditary properties. Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 167-178. doi : 10.21136/MB.2008.134058. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134058/
Cité par Sources :