On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $
Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 133-147.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper we investigate the global convergence result, boundedness and periodicity of solutions of the recursive sequence \[ x_{n+1}=\frac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}},\,\,\,n=0,1,\dots \,\ \] where the parameters $ a_{i}$ and $b_{i}$ for $i=0,1,\dots ,k$ are positive real numbers and the initial conditions $x_{-k},x_{-k+1},\dots ,x_{0}$ are arbitrary positive numbers.
DOI :
10.21136/MB.2008.134057
Classification :
39A10, 39A11, 39A20, 39A22, 39A23, 39A30
Mots-clés : stability; periodic solution; difference equation
Mots-clés : stability; periodic solution; difference equation
@article{10_21136_MB_2008_134057, author = {Elabbasy, E. M. and El-Metwally, H. and Elsayed, E. M.}, title = {On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $}, journal = {Mathematica Bohemica}, pages = {133--147}, publisher = {mathdoc}, volume = {133}, number = {2}, year = {2008}, doi = {10.21136/MB.2008.134057}, mrnumber = {2428309}, zbl = {1199.39028}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134057/} }
TY - JOUR AU - Elabbasy, E. M. AU - El-Metwally, H. AU - Elsayed, E. M. TI - On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $ JO - Mathematica Bohemica PY - 2008 SP - 133 EP - 147 VL - 133 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134057/ DO - 10.21136/MB.2008.134057 LA - en ID - 10_21136_MB_2008_134057 ER -
%0 Journal Article %A Elabbasy, E. M. %A El-Metwally, H. %A Elsayed, E. M. %T On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $ %J Mathematica Bohemica %D 2008 %P 133-147 %V 133 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134057/ %R 10.21136/MB.2008.134057 %G en %F 10_21136_MB_2008_134057
Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M. On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $. Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 133-147. doi : 10.21136/MB.2008.134057. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134057/
Cité par Sources :