On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $
Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 133-147.

Voir la notice de l'article dans Czech Digital Mathematics Library

In this paper we investigate the global convergence result, boundedness and periodicity of solutions of the recursive sequence \[ x_{n+1}=\frac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}},\,\,\,n=0,1,\dots \,\ \] where the parameters $ a_{i}$ and $b_{i}$ for $i=0,1,\dots ,k$ are positive real numbers and the initial conditions $x_{-k},x_{-k+1},\dots ,x_{0}$ are arbitrary positive numbers.
DOI : 10.21136/MB.2008.134057
Classification : 39A10, 39A11, 39A20, 39A22, 39A23, 39A30
Mots-clés : stability; periodic solution; difference equation
@article{10_21136_MB_2008_134057,
     author = {Elabbasy, E. M. and El-Metwally, H. and Elsayed, E. M.},
     title = {On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $},
     journal = {Mathematica Bohemica},
     pages = {133--147},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2008},
     doi = {10.21136/MB.2008.134057},
     mrnumber = {2428309},
     zbl = {1199.39028},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134057/}
}
TY  - JOUR
AU  - Elabbasy, E. M.
AU  - El-Metwally, H.
AU  - Elsayed, E. M.
TI  - On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $
JO  - Mathematica Bohemica
PY  - 2008
SP  - 133
EP  - 147
VL  - 133
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134057/
DO  - 10.21136/MB.2008.134057
LA  - en
ID  - 10_21136_MB_2008_134057
ER  - 
%0 Journal Article
%A Elabbasy, E. M.
%A El-Metwally, H.
%A Elsayed, E. M.
%T On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $
%J Mathematica Bohemica
%D 2008
%P 133-147
%V 133
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134057/
%R 10.21136/MB.2008.134057
%G en
%F 10_21136_MB_2008_134057
Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M. On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $. Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 133-147. doi : 10.21136/MB.2008.134057. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.134057/

Cité par Sources :