Rainbow connection in graphs
Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 85-98.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $G$ be a nontrivial connected graph on which is defined a coloring $c\: E(G) \rightarrow \lbrace 1, 2, \ldots , k\rbrace $, $k \in {\mathbb{N}}$, of the edges of $G$, where adjacent edges may be colored the same. A path $P$ in $G$ is a rainbow path if no two edges of $P$ are colored the same. The graph $G$ is rainbow-connected if $G$ contains a rainbow $u-v$ path for every two vertices $u$ and $v$ of $G$. The minimum $k$ for which there exists such a $k$-edge coloring is the rainbow connection number $\mathop {\mathrm rc}(G)$ of $G$. If for every pair $u, v$ of distinct vertices, $G$ contains a rainbow $u-v$ geodesic, then $G$ is strongly rainbow-connected. The minimum $k$ for which there exists a $k$-edge coloring of $G$ that results in a strongly rainbow-connected graph is called the strong rainbow connection number $\mathop {\mathrm src}(G)$ of $G$. Thus $\mathop {\mathrm rc}(G) \le \mathop {\mathrm src}(G)$ for every nontrivial connected graph $G$. Both $\mathop {\mathrm rc}(G)$ and $\mathop {\mathrm src}(G)$ are determined for all complete multipartite graphs $G$ as well as other classes of graphs. For every pair $a, b$ of integers with $a \ge 3$ and $b \ge (5a-6)/3$, it is shown that there exists a connected graph $G$ such that $\mathop {\mathrm rc}(G)=a$ and $\mathop {\mathrm src}(G)=b$.
DOI :
10.21136/MB.2008.133947
Classification :
05C15, 05C38, 05C40
Mots-clés : edge coloring; rainbow coloring; strong rainbow coloring
Mots-clés : edge coloring; rainbow coloring; strong rainbow coloring
@article{10_21136_MB_2008_133947, author = {Chartrand, Gary and Johns, Garry L. and McKeon, Kathleen A. and Zhang, Ping}, title = {Rainbow connection in graphs}, journal = {Mathematica Bohemica}, pages = {85--98}, publisher = {mathdoc}, volume = {133}, number = {1}, year = {2008}, doi = {10.21136/MB.2008.133947}, mrnumber = {2400153}, zbl = {1199.05106}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133947/} }
TY - JOUR AU - Chartrand, Gary AU - Johns, Garry L. AU - McKeon, Kathleen A. AU - Zhang, Ping TI - Rainbow connection in graphs JO - Mathematica Bohemica PY - 2008 SP - 85 EP - 98 VL - 133 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133947/ DO - 10.21136/MB.2008.133947 LA - en ID - 10_21136_MB_2008_133947 ER -
%0 Journal Article %A Chartrand, Gary %A Johns, Garry L. %A McKeon, Kathleen A. %A Zhang, Ping %T Rainbow connection in graphs %J Mathematica Bohemica %D 2008 %P 85-98 %V 133 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133947/ %R 10.21136/MB.2008.133947 %G en %F 10_21136_MB_2008_133947
Chartrand, Gary; Johns, Garry L.; McKeon, Kathleen A.; Zhang, Ping. Rainbow connection in graphs. Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 85-98. doi : 10.21136/MB.2008.133947. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133947/
Cité par Sources :