Rainbow connection in graphs
Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 85-98.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $G$ be a nontrivial connected graph on which is defined a coloring $c\: E(G) \rightarrow \lbrace 1, 2, \ldots , k\rbrace $, $k \in {\mathbb{N}}$, of the edges of $G$, where adjacent edges may be colored the same. A path $P$ in $G$ is a rainbow path if no two edges of $P$ are colored the same. The graph $G$ is rainbow-connected if $G$ contains a rainbow $u-v$ path for every two vertices $u$ and $v$ of $G$. The minimum $k$ for which there exists such a $k$-edge coloring is the rainbow connection number $\mathop {\mathrm rc}(G)$ of $G$. If for every pair $u, v$ of distinct vertices, $G$ contains a rainbow $u-v$ geodesic, then $G$ is strongly rainbow-connected. The minimum $k$ for which there exists a $k$-edge coloring of $G$ that results in a strongly rainbow-connected graph is called the strong rainbow connection number $\mathop {\mathrm src}(G)$ of $G$. Thus $\mathop {\mathrm rc}(G) \le \mathop {\mathrm src}(G)$ for every nontrivial connected graph $G$. Both $\mathop {\mathrm rc}(G)$ and $\mathop {\mathrm src}(G)$ are determined for all complete multipartite graphs $G$ as well as other classes of graphs. For every pair $a, b$ of integers with $a \ge 3$ and $b \ge (5a-6)/3$, it is shown that there exists a connected graph $G$ such that $\mathop {\mathrm rc}(G)=a$ and $\mathop {\mathrm src}(G)=b$.
DOI : 10.21136/MB.2008.133947
Classification : 05C15, 05C38, 05C40
Mots-clés : edge coloring; rainbow coloring; strong rainbow coloring
@article{10_21136_MB_2008_133947,
     author = {Chartrand, Gary and Johns, Garry L. and McKeon, Kathleen A. and Zhang, Ping},
     title = {Rainbow connection in graphs},
     journal = {Mathematica Bohemica},
     pages = {85--98},
     publisher = {mathdoc},
     volume = {133},
     number = {1},
     year = {2008},
     doi = {10.21136/MB.2008.133947},
     mrnumber = {2400153},
     zbl = {1199.05106},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133947/}
}
TY  - JOUR
AU  - Chartrand, Gary
AU  - Johns, Garry L.
AU  - McKeon, Kathleen A.
AU  - Zhang, Ping
TI  - Rainbow connection in graphs
JO  - Mathematica Bohemica
PY  - 2008
SP  - 85
EP  - 98
VL  - 133
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133947/
DO  - 10.21136/MB.2008.133947
LA  - en
ID  - 10_21136_MB_2008_133947
ER  - 
%0 Journal Article
%A Chartrand, Gary
%A Johns, Garry L.
%A McKeon, Kathleen A.
%A Zhang, Ping
%T Rainbow connection in graphs
%J Mathematica Bohemica
%D 2008
%P 85-98
%V 133
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133947/
%R 10.21136/MB.2008.133947
%G en
%F 10_21136_MB_2008_133947
Chartrand, Gary; Johns, Garry L.; McKeon, Kathleen A.; Zhang, Ping. Rainbow connection in graphs. Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 85-98. doi : 10.21136/MB.2008.133947. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133947/

Cité par Sources :