An existence and multiplicity result for a periodic boundary value problem
Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 41-61.

Voir la notice de l'article dans Czech Digital Mathematics Library

A periodic boundary value problem for nonlinear differential equation of the second order is studied. Nagumo condition is not assumed on a part of nonlinearity. Existence and multiplicity results are proved using the method of lower and upper solutions. Results are applied to the generalized Liénard oscillator.
DOI : 10.21136/MB.2008.133946
Classification : 34B15, 34C25
Mots-clés : periodic boundary value problem; multiplicity result; method of lower and upper solutions; Liénard oscillator
@article{10_21136_MB_2008_133946,
     author = {Rudolf, Boris},
     title = {An existence and multiplicity result for a periodic boundary value problem},
     journal = {Mathematica Bohemica},
     pages = {41--61},
     publisher = {mathdoc},
     volume = {133},
     number = {1},
     year = {2008},
     doi = {10.21136/MB.2008.133946},
     mrnumber = {2400150},
     zbl = {1199.34065},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133946/}
}
TY  - JOUR
AU  - Rudolf, Boris
TI  - An existence and multiplicity result for a periodic boundary value problem
JO  - Mathematica Bohemica
PY  - 2008
SP  - 41
EP  - 61
VL  - 133
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133946/
DO  - 10.21136/MB.2008.133946
LA  - en
ID  - 10_21136_MB_2008_133946
ER  - 
%0 Journal Article
%A Rudolf, Boris
%T An existence and multiplicity result for a periodic boundary value problem
%J Mathematica Bohemica
%D 2008
%P 41-61
%V 133
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133946/
%R 10.21136/MB.2008.133946
%G en
%F 10_21136_MB_2008_133946
Rudolf, Boris. An existence and multiplicity result for a periodic boundary value problem. Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 41-61. doi : 10.21136/MB.2008.133946. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133946/

Cité par Sources :