A multidimensional integration by parts formula for the Henstock-Kurzweil integral
Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 63-74.

Voir la notice de l'article dans Czech Digital Mathematics Library

It is shown that if $g$ is of bounded variation in the sense of Hardy-Krause on ${\mathop {\prod }\limits _{i=1}^{m}} [a_i, b_i]$, then $g \chi _{ _{{\mathop {\prod }\limits _{i=1}^{m}} (a_i, b_i)}}$ is of bounded variation there. As a result, we obtain a simple proof of Kurzweil’s multidimensional integration by parts formula.
DOI : 10.21136/MB.2008.133945
Classification : 26A39
Mots-clés : Henstock-Kurzweil integral; bounded variation in the sense of Hardy-Krause; integration by parts
@article{10_21136_MB_2008_133945,
     author = {Lee, Tuo-Yeong},
     title = {A multidimensional integration by parts formula for the {Henstock-Kurzweil} integral},
     journal = {Mathematica Bohemica},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {133},
     number = {1},
     year = {2008},
     doi = {10.21136/MB.2008.133945},
     mrnumber = {2400151},
     zbl = {1199.26029},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133945/}
}
TY  - JOUR
AU  - Lee, Tuo-Yeong
TI  - A multidimensional integration by parts formula for the Henstock-Kurzweil integral
JO  - Mathematica Bohemica
PY  - 2008
SP  - 63
EP  - 74
VL  - 133
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133945/
DO  - 10.21136/MB.2008.133945
LA  - en
ID  - 10_21136_MB_2008_133945
ER  - 
%0 Journal Article
%A Lee, Tuo-Yeong
%T A multidimensional integration by parts formula for the Henstock-Kurzweil integral
%J Mathematica Bohemica
%D 2008
%P 63-74
%V 133
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133945/
%R 10.21136/MB.2008.133945
%G en
%F 10_21136_MB_2008_133945
Lee, Tuo-Yeong. A multidimensional integration by parts formula for the Henstock-Kurzweil integral. Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 63-74. doi : 10.21136/MB.2008.133945. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133945/

Cité par Sources :