Order convergence of vector measures on topological spaces
Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 19-27.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $X$ be a completely regular Hausdorff space, $E$ a boundedly complete vector lattice, $C_{b}(X)$ the space of all, bounded, real-valued continuous functions on $X$, $\mathcal{F}$ the algebra generated by the zero-sets of $X$, and $\mu \: C_{b}(X) \rightarrow E$ a positive linear map. First we give a new proof that $\mu $ extends to a unique, finitely additive measure $ \mu \: \mathcal{F} \rightarrow E^{+}$ such that $\nu $ is inner regular by zero-sets and outer regular by cozero sets. Then some order-convergence theorems about nets of $E^{+}$-valued finitely additive measures on $\mathcal{F}$ are proved, which extend some known results. Also, under certain conditions, the well-known Alexandrov’s theorem about the convergent sequences of $\sigma $-additive measures is extended to the case of order convergence.
DOI : 10.21136/MB.2008.133944
Classification : 28A33, 28B05, 28B15, 28C05, 28C15, 46B42, 46G10, 47B65
Mots-clés : order convergence; tight and $\tau $-smooth lattice-valued vector measures; measure representation of positive linear operators; Alexandrov’s theorem
@article{10_21136_MB_2008_133944,
     author = {Khurana, Surjit Singh},
     title = {Order convergence of vector measures on topological spaces},
     journal = {Mathematica Bohemica},
     pages = {19--27},
     publisher = {mathdoc},
     volume = {133},
     number = {1},
     year = {2008},
     doi = {10.21136/MB.2008.133944},
     mrnumber = {2400148},
     zbl = {1199.28008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133944/}
}
TY  - JOUR
AU  - Khurana, Surjit Singh
TI  - Order convergence of vector measures on topological spaces
JO  - Mathematica Bohemica
PY  - 2008
SP  - 19
EP  - 27
VL  - 133
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133944/
DO  - 10.21136/MB.2008.133944
LA  - en
ID  - 10_21136_MB_2008_133944
ER  - 
%0 Journal Article
%A Khurana, Surjit Singh
%T Order convergence of vector measures on topological spaces
%J Mathematica Bohemica
%D 2008
%P 19-27
%V 133
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133944/
%R 10.21136/MB.2008.133944
%G en
%F 10_21136_MB_2008_133944
Khurana, Surjit Singh. Order convergence of vector measures on topological spaces. Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 19-27. doi : 10.21136/MB.2008.133944. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133944/

Cité par Sources :