On reflexivity and hyperreflexivity of some spaces of intertwining operators
Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 75-83.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $T,T^{\prime }$ be weak contractions (in the sense of Sz.-Nagy and Foiaş), $m,m^{\prime }$ the minimal functions of their $C_0$ parts and let $d$ be the greatest common inner divisor of $m,m^{\prime }$. It is proved that the space $I(T,T^{\prime })$ of all operators intertwining $T,T^{\prime }$ is reflexive if and only if the model operator $S(d)$ is reflexive. Here $S(d)$ means the compression of the unilateral shift onto the space $H^2\ominus dH^2$. In particular, in finite-dimensional spaces the space $I(T,T^{\prime })$ is reflexive if and only if all roots of the greatest common divisor of minimal polynomials of $T,T^{\prime }$ are simple. The paper is concluded by an example showing that quasisimilarity does not preserve hyperreflexivity of $I(T,T^{\prime })$.
DOI : 10.21136/MB.2008.133939
Classification : 47A10, 47A15, 47A45
Mots-clés : intertwining operator; reflexivity; $C_0$ contraction; weak contraction; hyperreflexivity
@article{10_21136_MB_2008_133939,
     author = {Zajac, Michal},
     title = {On reflexivity and hyperreflexivity of some spaces of intertwining operators},
     journal = {Mathematica Bohemica},
     pages = {75--83},
     publisher = {mathdoc},
     volume = {133},
     number = {1},
     year = {2008},
     doi = {10.21136/MB.2008.133939},
     mrnumber = {2400152},
     zbl = {1199.47024},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133939/}
}
TY  - JOUR
AU  - Zajac, Michal
TI  - On reflexivity and hyperreflexivity of some spaces of intertwining operators
JO  - Mathematica Bohemica
PY  - 2008
SP  - 75
EP  - 83
VL  - 133
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133939/
DO  - 10.21136/MB.2008.133939
LA  - en
ID  - 10_21136_MB_2008_133939
ER  - 
%0 Journal Article
%A Zajac, Michal
%T On reflexivity and hyperreflexivity of some spaces of intertwining operators
%J Mathematica Bohemica
%D 2008
%P 75-83
%V 133
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133939/
%R 10.21136/MB.2008.133939
%G en
%F 10_21136_MB_2008_133939
Zajac, Michal. On reflexivity and hyperreflexivity of some spaces of intertwining operators. Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 75-83. doi : 10.21136/MB.2008.133939. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133939/

Cité par Sources :