On reflexivity and hyperreflexivity of some spaces of intertwining operators
Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 75-83.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $T,T^{\prime }$ be weak contractions (in the sense of Sz.-Nagy and Foiaş), $m,m^{\prime }$ the minimal functions of their $C_0$ parts and let $d$ be the greatest common inner divisor of $m,m^{\prime }$. It is proved that the space $I(T,T^{\prime })$ of all operators intertwining $T,T^{\prime }$ is reflexive if and only if the model operator $S(d)$ is reflexive. Here $S(d)$ means the compression of the unilateral shift onto the space $H^2\ominus dH^2$. In particular, in finite-dimensional spaces the space $I(T,T^{\prime })$ is reflexive if and only if all roots of the greatest common divisor of minimal polynomials of $T,T^{\prime }$ are simple. The paper is concluded by an example showing that quasisimilarity does not preserve hyperreflexivity of $I(T,T^{\prime })$.
DOI :
10.21136/MB.2008.133939
Classification :
47A10, 47A15, 47A45
Mots-clés : intertwining operator; reflexivity; $C_0$ contraction; weak contraction; hyperreflexivity
Mots-clés : intertwining operator; reflexivity; $C_0$ contraction; weak contraction; hyperreflexivity
@article{10_21136_MB_2008_133939, author = {Zajac, Michal}, title = {On reflexivity and hyperreflexivity of some spaces of intertwining operators}, journal = {Mathematica Bohemica}, pages = {75--83}, publisher = {mathdoc}, volume = {133}, number = {1}, year = {2008}, doi = {10.21136/MB.2008.133939}, mrnumber = {2400152}, zbl = {1199.47024}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133939/} }
TY - JOUR AU - Zajac, Michal TI - On reflexivity and hyperreflexivity of some spaces of intertwining operators JO - Mathematica Bohemica PY - 2008 SP - 75 EP - 83 VL - 133 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133939/ DO - 10.21136/MB.2008.133939 LA - en ID - 10_21136_MB_2008_133939 ER -
%0 Journal Article %A Zajac, Michal %T On reflexivity and hyperreflexivity of some spaces of intertwining operators %J Mathematica Bohemica %D 2008 %P 75-83 %V 133 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133939/ %R 10.21136/MB.2008.133939 %G en %F 10_21136_MB_2008_133939
Zajac, Michal. On reflexivity and hyperreflexivity of some spaces of intertwining operators. Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 75-83. doi : 10.21136/MB.2008.133939. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2008.133939/
Cité par Sources :