Property (A) of $n$-th order ODE's
Mathematica Bohemica, Tome 122 (1997) no. 4, pp. 349-356.
Voir la notice de l'article dans Czech Digital Mathematics Library
The aim of this paper is to deduce oscillatory and asymptotic behavior of the solutions of the ordinary differential equation L_nu(t)+p(t)u(t)=0.
DOI :
10.21136/MB.1997.126218
Classification :
34C10, 34C11, 34D05
Mots-clés : property (A) of ODE's; oscillatory behavior; solutions; ordinary differential equations; quasiderivatives; binomial equation; delay-differential equation; differential inequalities; nonoscillatory solutions
Mots-clés : property (A) of ODE's; oscillatory behavior; solutions; ordinary differential equations; quasiderivatives; binomial equation; delay-differential equation; differential inequalities; nonoscillatory solutions
@article{10_21136_MB_1997_126218, author = {D\v{z}urina, Jozef}, title = {Property {(A)} of $n$-th order {ODE's}}, journal = {Mathematica Bohemica}, pages = {349--356}, publisher = {mathdoc}, volume = {122}, number = {4}, year = {1997}, doi = {10.21136/MB.1997.126218}, mrnumber = {1489395}, zbl = {0903.34031}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126218/} }
Džurina, Jozef. Property (A) of $n$-th order ODE's. Mathematica Bohemica, Tome 122 (1997) no. 4, pp. 349-356. doi : 10.21136/MB.1997.126218. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126218/
Cité par Sources :