A PU-integral on an abstract metric space
Mathematica Bohemica, Tome 122 (1997) no. 1, pp. 83-95.

Voir la notice de l'article dans Czech Digital Mathematics Library

In this paper, we define a $\PU$-integral, i.e. an integral defined by means of partitions of unity, on a suitable compact metric measure space, whose measure $\mu$ is compatible with its topology in the sense that every open set is $\mu$-measurable. We prove that the $\PU$-integral is equivalent to $\mu$-integral. Moreover, we give an example of a noneuclidean compact metric space such that the above results are true.
DOI : 10.21136/MB.1997.126181
Classification : 26A39, 28A25, 46G12
Mots-clés : PU-integral; partition of unity
@article{10_21136_MB_1997_126181,
     author = {Riccobono, Giuseppa},
     title = {A {PU-integral} on an abstract metric space},
     journal = {Mathematica Bohemica},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {122},
     number = {1},
     year = {1997},
     doi = {10.21136/MB.1997.126181},
     mrnumber = {1446402},
     zbl = {0891.28003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126181/}
}
TY  - JOUR
AU  - Riccobono, Giuseppa
TI  - A PU-integral on an abstract metric space
JO  - Mathematica Bohemica
PY  - 1997
SP  - 83
EP  - 95
VL  - 122
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126181/
DO  - 10.21136/MB.1997.126181
LA  - en
ID  - 10_21136_MB_1997_126181
ER  - 
%0 Journal Article
%A Riccobono, Giuseppa
%T A PU-integral on an abstract metric space
%J Mathematica Bohemica
%D 1997
%P 83-95
%V 122
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126181/
%R 10.21136/MB.1997.126181
%G en
%F 10_21136_MB_1997_126181
Riccobono, Giuseppa. A PU-integral on an abstract metric space. Mathematica Bohemica, Tome 122 (1997) no. 1, pp. 83-95. doi : 10.21136/MB.1997.126181. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126181/

Cité par Sources :