A PU-integral on an abstract metric space
Mathematica Bohemica, Tome 122 (1997) no. 1, pp. 83-95.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper, we define a $\PU$-integral, i.e. an integral defined by means of partitions of unity, on a suitable compact metric measure space, whose measure $\mu$ is compatible with its topology in the sense that every open set is $\mu$-measurable. We prove that the $\PU$-integral is equivalent to $\mu$-integral. Moreover, we give an example of a noneuclidean compact metric space such that the above results are true.
DOI :
10.21136/MB.1997.126181
Classification :
26A39, 28A25, 46G12
Mots-clés : PU-integral; partition of unity
Mots-clés : PU-integral; partition of unity
@article{10_21136_MB_1997_126181, author = {Riccobono, Giuseppa}, title = {A {PU-integral} on an abstract metric space}, journal = {Mathematica Bohemica}, pages = {83--95}, publisher = {mathdoc}, volume = {122}, number = {1}, year = {1997}, doi = {10.21136/MB.1997.126181}, mrnumber = {1446402}, zbl = {0891.28003}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126181/} }
TY - JOUR AU - Riccobono, Giuseppa TI - A PU-integral on an abstract metric space JO - Mathematica Bohemica PY - 1997 SP - 83 EP - 95 VL - 122 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126181/ DO - 10.21136/MB.1997.126181 LA - en ID - 10_21136_MB_1997_126181 ER -
Riccobono, Giuseppa. A PU-integral on an abstract metric space. Mathematica Bohemica, Tome 122 (1997) no. 1, pp. 83-95. doi : 10.21136/MB.1997.126181. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126181/
Cité par Sources :