Two classes of graphs related to extremal eccentricities
Mathematica Bohemica, Tome 122 (1997) no. 3, pp. 231-241.
Voir la notice de l'article dans Czech Digital Mathematics Library
A graph $G$ is called an $S$-graph if its periphery $\mathop Peri(G)$ is equal to its center eccentric vertices $\mathop Cep(G)$. Further, a graph $G$ is called a $D$-graph if $\mathop Peri(G)\cap\mathop Cep(G)=\emptyset$.
We describe $S$-graphs and $D$-graphs for small radius. Then, for a given graph $H$ and natural numbers $r\ge2$, $n\ge2$, we construct an $S$-graph of radius $r$ having $n$ central vertices and containing $H$ as an induced subgraph. We prove an analogous existence theorem for $D$-graphs, too. At the end, we give some properties of $S$-graphs and $D$-graphs.
DOI :
10.21136/MB.1997.126153
Classification :
05C12, 05C35
Mots-clés : eccentricity; central vertex; peripheral vertex
Mots-clés : eccentricity; central vertex; peripheral vertex
@article{10_21136_MB_1997_126153, author = {Gliviak, Ferdinand}, title = {Two classes of graphs related to extremal eccentricities}, journal = {Mathematica Bohemica}, pages = {231--241}, publisher = {mathdoc}, volume = {122}, number = {3}, year = {1997}, doi = {10.21136/MB.1997.126153}, mrnumber = {1600875}, zbl = {0898.05021}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126153/} }
TY - JOUR AU - Gliviak, Ferdinand TI - Two classes of graphs related to extremal eccentricities JO - Mathematica Bohemica PY - 1997 SP - 231 EP - 241 VL - 122 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126153/ DO - 10.21136/MB.1997.126153 LA - en ID - 10_21136_MB_1997_126153 ER -
Gliviak, Ferdinand. Two classes of graphs related to extremal eccentricities. Mathematica Bohemica, Tome 122 (1997) no. 3, pp. 231-241. doi : 10.21136/MB.1997.126153. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126153/
Cité par Sources :