On $r$-extendability of the hypercube $Q\sb n$
Mathematica Bohemica, Tome 122 (1997) no. 3, pp. 249-255.

Voir la notice de l'article dans Czech Digital Mathematics Library

A graph having a perfect matching is called $r$-extendable if every matching of size $r$ can be extended to a perfect matching. It is proved that in the hypercube $Q_n$, a matching $S$ with $ |S|\leq n$ can be extended to a perfect matching if and only if it does not saturate the neighbourhood of any unsaturated vertex. In particular, $Q_n$ is $r$-extendable for every $r$ with $1\leq r\leq n-1.$
DOI : 10.21136/MB.1997.126151
Classification : 05C70
Mots-clés : hypercube; perfect matching; 1-factor; $r$-extendability
@article{10_21136_MB_1997_126151,
     author = {Limaye, Nirmala B. and Sarvate, Dinesh G.},
     title = {On $r$-extendability of the hypercube $Q\sb n$},
     journal = {Mathematica Bohemica},
     pages = {249--255},
     publisher = {mathdoc},
     volume = {122},
     number = {3},
     year = {1997},
     doi = {10.21136/MB.1997.126151},
     mrnumber = {1600640},
     zbl = {0898.05057},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126151/}
}
TY  - JOUR
AU  - Limaye, Nirmala B.
AU  - Sarvate, Dinesh G.
TI  - On $r$-extendability of the hypercube $Q\sb n$
JO  - Mathematica Bohemica
PY  - 1997
SP  - 249
EP  - 255
VL  - 122
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126151/
DO  - 10.21136/MB.1997.126151
LA  - en
ID  - 10_21136_MB_1997_126151
ER  - 
%0 Journal Article
%A Limaye, Nirmala B.
%A Sarvate, Dinesh G.
%T On $r$-extendability of the hypercube $Q\sb n$
%J Mathematica Bohemica
%D 1997
%P 249-255
%V 122
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126151/
%R 10.21136/MB.1997.126151
%G en
%F 10_21136_MB_1997_126151
Limaye, Nirmala B.; Sarvate, Dinesh G. On $r$-extendability of the hypercube $Q\sb n$. Mathematica Bohemica, Tome 122 (1997) no. 3, pp. 249-255. doi : 10.21136/MB.1997.126151. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.126151/

Cité par Sources :