Comparison theorems for differential equations of neutral type
Mathematica Bohemica, Tome 122 (1997) no. 2, pp. 181-189.
Voir la notice de l'article dans Czech Digital Mathematics Library
We are interested in comparing the oscillatory and asymptotic properties of the equations $L_n [x(t)-P(t) x(g(t))]+\delta f(t,x(h(t)))=0$ with those of the equations $M_n [x(t)-P(t) x(g(t))]+\delta Q(t)q(x(r(t)))=0.$
DOI :
10.21136/MB.1997.125913
Classification :
34K15, 34K25, 34K40
Mots-clés : neutral differential equations; oscillatory solutions; property $\Cal A$; property $\Cal B$; quasi-derivatives
Mots-clés : neutral differential equations; oscillatory solutions; property $\Cal A$; property $\Cal B$; quasi-derivatives
@article{10_21136_MB_1997_125913, author = {R\r{u}\v{z}i\v{c}kov\'a, Miroslava}, title = {Comparison theorems for differential equations of neutral type}, journal = {Mathematica Bohemica}, pages = {181--189}, publisher = {mathdoc}, volume = {122}, number = {2}, year = {1997}, doi = {10.21136/MB.1997.125913}, mrnumber = {1460948}, zbl = {0897.34066}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.125913/} }
TY - JOUR AU - Růžičková, Miroslava TI - Comparison theorems for differential equations of neutral type JO - Mathematica Bohemica PY - 1997 SP - 181 EP - 189 VL - 122 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.125913/ DO - 10.21136/MB.1997.125913 LA - en ID - 10_21136_MB_1997_125913 ER -
%0 Journal Article %A Růžičková, Miroslava %T Comparison theorems for differential equations of neutral type %J Mathematica Bohemica %D 1997 %P 181-189 %V 122 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.125913/ %R 10.21136/MB.1997.125913 %G en %F 10_21136_MB_1997_125913
Růžičková, Miroslava. Comparison theorems for differential equations of neutral type. Mathematica Bohemica, Tome 122 (1997) no. 2, pp. 181-189. doi : 10.21136/MB.1997.125913. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.1997.125913/
Cité par Sources :