A posteriori error estimates for parabolic differential systems solved by the finite element method of lines
Applications of Mathematics, Tome 39 (1994) no. 6, pp. 415-443.

Voir la notice de l'article dans Czech Digital Mathematics Library

Systems of parabolic differential equations are studied in the paper. Two a posteriori error estimates for the approximate solution obtained by the finite element method of lines are presented. A statement on the rate of convergence of the approximation of error by estimator to the error is proved.
DOI : 10.21136/AM.1994.134269
Classification : 35K15, 65M15, 65M20
Mots-clés : a posteriori error estimate; system of parabolic equations; finite element method; method of lines
@article{10_21136_AM_1994_134269,
     author = {Segeth, Karel},
     title = {A posteriori error estimates for parabolic differential systems solved by the finite element method of lines},
     journal = {Applications of Mathematics},
     pages = {415--443},
     publisher = {mathdoc},
     volume = {39},
     number = {6},
     year = {1994},
     doi = {10.21136/AM.1994.134269},
     mrnumber = {1298731},
     zbl = {0822.65068},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1994.134269/}
}
TY  - JOUR
AU  - Segeth, Karel
TI  - A posteriori error estimates for parabolic differential systems solved by the finite element method of lines
JO  - Applications of Mathematics
PY  - 1994
SP  - 415
EP  - 443
VL  - 39
IS  - 6
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1994.134269/
DO  - 10.21136/AM.1994.134269
LA  - en
ID  - 10_21136_AM_1994_134269
ER  - 
%0 Journal Article
%A Segeth, Karel
%T A posteriori error estimates for parabolic differential systems solved by the finite element method of lines
%J Applications of Mathematics
%D 1994
%P 415-443
%V 39
%N 6
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1994.134269/
%R 10.21136/AM.1994.134269
%G en
%F 10_21136_AM_1994_134269
Segeth, Karel. A posteriori error estimates for parabolic differential systems solved by the finite element method of lines. Applications of Mathematics, Tome 39 (1994) no. 6, pp. 415-443. doi : 10.21136/AM.1994.134269. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1994.134269/

Cité par Sources :