Spectral methods for singular perturbation problems
Applications of Mathematics, Tome 39 (1994) no. 3, pp. 161-188.
Voir la notice de l'article dans Czech Digital Mathematics Library
We study spectral discretizations for singular perturbation problems. A special technique of stabilization for the spectral method is proposed. Boundary layer problems are accurately solved by a domain decomposition method. An effective iterative method for the solution of spectral systems is proposed. Suitable components for a multigrid method are presented.
DOI :
10.21136/AM.1994.134251
Classification :
35B25, 35J25, 65F10, 65N12, 65N35, 65N55
Mots-clés : spectral methods; singular perturbation; stabilization; domain decomposition; iterative solver; multigrid method
Mots-clés : spectral methods; singular perturbation; stabilization; domain decomposition; iterative solver; multigrid method
@article{10_21136_AM_1994_134251, author = {Heinrichs, Wilhelm}, title = {Spectral methods for singular perturbation problems}, journal = {Applications of Mathematics}, pages = {161--188}, publisher = {mathdoc}, volume = {39}, number = {3}, year = {1994}, doi = {10.21136/AM.1994.134251}, mrnumber = {1273631}, zbl = {0812.65100}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1994.134251/} }
TY - JOUR AU - Heinrichs, Wilhelm TI - Spectral methods for singular perturbation problems JO - Applications of Mathematics PY - 1994 SP - 161 EP - 188 VL - 39 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1994.134251/ DO - 10.21136/AM.1994.134251 LA - en ID - 10_21136_AM_1994_134251 ER -
Heinrichs, Wilhelm. Spectral methods for singular perturbation problems. Applications of Mathematics, Tome 39 (1994) no. 3, pp. 161-188. doi : 10.21136/AM.1994.134251. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1994.134251/
Cité par Sources :