On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$
Applications of Mathematics, Tome 35 (1990) no. 4, pp. 315-336.

Voir la notice de l'article dans Czech Digital Mathematics Library

In the paper it is shown that each solution $u(r,\alpha)$ ot the initial value problem (2), (3) has a finite limit for $r\rightarrow \infty$, and an asymptotic formula for the nontrivial solution $u(r,\alpha)$ tending to 0 is given. Further, the existence of such a solutions is established by examining the number of zeros of two different solutions $u(r,\bar{\alpha})$, $u(r,\hat{\alpha})$.
DOI : 10.21136/AM.1990.104413
Classification : 34A12, 34C10, 34D05, 34E99, 35Q40
Mots-clés : spherically symmetric solution; trajectory of the solution; со-limit point of the trajectory; asymptotic formula; antitone and contractive operator; zero of the solution; Klein-Gordon equation; global behavior
@article{10_21136_AM_1990_104413,
     author = {\v{S}eda, Valter and Pek\'ar, J\'an},
     title = {On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$},
     journal = {Applications of Mathematics},
     pages = {315--336},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {1990},
     doi = {10.21136/AM.1990.104413},
     mrnumber = {1065005},
     zbl = {0719.34058},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104413/}
}
TY  - JOUR
AU  - Šeda, Valter
AU  - Pekár, Ján
TI  - On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$
JO  - Applications of Mathematics
PY  - 1990
SP  - 315
EP  - 336
VL  - 35
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104413/
DO  - 10.21136/AM.1990.104413
LA  - en
ID  - 10_21136_AM_1990_104413
ER  - 
%0 Journal Article
%A Šeda, Valter
%A Pekár, Ján
%T On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$
%J Applications of Mathematics
%D 1990
%P 315-336
%V 35
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104413/
%R 10.21136/AM.1990.104413
%G en
%F 10_21136_AM_1990_104413
Šeda, Valter; Pekár, Ján. On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$. Applications of Mathematics, Tome 35 (1990) no. 4, pp. 315-336. doi : 10.21136/AM.1990.104413. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104413/

Cité par Sources :