On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$
Applications of Mathematics, Tome 35 (1990) no. 4, pp. 315-336.
Voir la notice de l'article dans Czech Digital Mathematics Library
In the paper it is shown that each solution $u(r,\alpha)$ ot the initial value problem (2), (3) has a finite limit for $r\rightarrow \infty$, and an asymptotic formula for the nontrivial solution $u(r,\alpha)$ tending to 0 is given. Further, the existence of such a solutions is established by examining the number of zeros of two different solutions $u(r,\bar{\alpha})$, $u(r,\hat{\alpha})$.
DOI :
10.21136/AM.1990.104413
Classification :
34A12, 34C10, 34D05, 34E99, 35Q40
Mots-clés : spherically symmetric solution; trajectory of the solution; со-limit point of the trajectory; asymptotic formula; antitone and contractive operator; zero of the solution; Klein-Gordon equation; global behavior
Mots-clés : spherically symmetric solution; trajectory of the solution; со-limit point of the trajectory; asymptotic formula; antitone and contractive operator; zero of the solution; Klein-Gordon equation; global behavior
@article{10_21136_AM_1990_104413, author = {\v{S}eda, Valter and Pek\'ar, J\'an}, title = {On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$}, journal = {Applications of Mathematics}, pages = {315--336}, publisher = {mathdoc}, volume = {35}, number = {4}, year = {1990}, doi = {10.21136/AM.1990.104413}, mrnumber = {1065005}, zbl = {0719.34058}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104413/} }
TY - JOUR AU - Šeda, Valter AU - Pekár, Ján TI - On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$ JO - Applications of Mathematics PY - 1990 SP - 315 EP - 336 VL - 35 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104413/ DO - 10.21136/AM.1990.104413 LA - en ID - 10_21136_AM_1990_104413 ER -
%0 Journal Article %A Šeda, Valter %A Pekár, Ján %T On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$ %J Applications of Mathematics %D 1990 %P 315-336 %V 35 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104413/ %R 10.21136/AM.1990.104413 %G en %F 10_21136_AM_1990_104413
Šeda, Valter; Pekár, Ján. On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$. Applications of Mathematics, Tome 35 (1990) no. 4, pp. 315-336. doi : 10.21136/AM.1990.104413. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104413/
Cité par Sources :