Interval solutions of linear interval equations
Applications of Mathematics, Tome 35 (1990) no. 3, pp. 220-224.
Voir la notice de l'article dans Czech Digital Mathematics Library
It is shown that if the concept of an interval solution to a system of linear interval equations given by Ratschek and Sauer is slightly modified, then only two nonlinear equations are to be solved to find a modified interval solution or to verify that no such solution exists.
DOI :
10.21136/AM.1990.104406
Classification :
15A06, 65F30, 65G10, 65G30, 65H05, 65H10
Mots-clés : linear systems; interval arithmetic; interval solution; interval matrix; interval vector
Mots-clés : linear systems; interval arithmetic; interval solution; interval matrix; interval vector
@article{10_21136_AM_1990_104406, author = {Rohn, Ji\v{r}{\'\i}}, title = {Interval solutions of linear interval equations}, journal = {Applications of Mathematics}, pages = {220--224}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {1990}, doi = {10.21136/AM.1990.104406}, mrnumber = {1052743}, zbl = {0716.65047}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104406/} }
TY - JOUR AU - Rohn, Jiří TI - Interval solutions of linear interval equations JO - Applications of Mathematics PY - 1990 SP - 220 EP - 224 VL - 35 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104406/ DO - 10.21136/AM.1990.104406 LA - en ID - 10_21136_AM_1990_104406 ER -
Rohn, Jiří. Interval solutions of linear interval equations. Applications of Mathematics, Tome 35 (1990) no. 3, pp. 220-224. doi : 10.21136/AM.1990.104406. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104406/
Cité par Sources :