On mean value in $F$-quantum spaces
Applications of Mathematics, Tome 35 (1990) no. 3, pp. 209-214.
Voir la notice de l'article dans Czech Digital Mathematics Library
The paper deals with a new mathematical model for quantum mechanics based on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic properties of the integral are examined.
DOI :
10.21136/AM.1990.104404
Classification :
03E72, 03G12, 04A72, 60A99, 81C20, 81P10
Mots-clés : quantum mechanics; observables; states; probability; fuzzy sets; $F$-quantum space; indefinite integral of observables
Mots-clés : quantum mechanics; observables; states; probability; fuzzy sets; $F$-quantum space; indefinite integral of observables
@article{10_21136_AM_1990_104404, author = {Rie\v{c}an, Beloslav}, title = {On mean value in $F$-quantum spaces}, journal = {Applications of Mathematics}, pages = {209--214}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {1990}, doi = {10.21136/AM.1990.104404}, mrnumber = {1052741}, zbl = {0719.60002}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104404/} }
TY - JOUR AU - Riečan, Beloslav TI - On mean value in $F$-quantum spaces JO - Applications of Mathematics PY - 1990 SP - 209 EP - 214 VL - 35 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104404/ DO - 10.21136/AM.1990.104404 LA - en ID - 10_21136_AM_1990_104404 ER -
Riečan, Beloslav. On mean value in $F$-quantum spaces. Applications of Mathematics, Tome 35 (1990) no. 3, pp. 209-214. doi : 10.21136/AM.1990.104404. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104404/
Cité par Sources :