Iterative solution of eigenvalue problems for normal operators
Applications of Mathematics, Tome 35 (1990) no. 2, pp. 158-161.
Voir la notice de l'article dans Czech Digital Mathematics Library
We will discuss Kellogg's iterations in eigenvalue problems for normal operators. A certain generalisation of the convergence theorem is shown.
DOI :
10.21136/AM.1990.104397
Classification :
47A75, 47B15, 49G20, 65J10
Mots-clés : eigenvalue problem; normal operator; Kellogg's iteration; Hilbert space; eigenvector
Mots-clés : eigenvalue problem; normal operator; Kellogg's iteration; Hilbert space; eigenvector
@article{10_21136_AM_1990_104397, author = {Kojeck\'y, Tom\'a\v{s}}, title = {Iterative solution of eigenvalue problems for normal operators}, journal = {Applications of Mathematics}, pages = {158--161}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {1990}, doi = {10.21136/AM.1990.104397}, mrnumber = {1042851}, zbl = {0708.65055}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104397/} }
TY - JOUR AU - Kojecký, Tomáš TI - Iterative solution of eigenvalue problems for normal operators JO - Applications of Mathematics PY - 1990 SP - 158 EP - 161 VL - 35 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104397/ DO - 10.21136/AM.1990.104397 LA - en ID - 10_21136_AM_1990_104397 ER -
%0 Journal Article %A Kojecký, Tomáš %T Iterative solution of eigenvalue problems for normal operators %J Applications of Mathematics %D 1990 %P 158-161 %V 35 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104397/ %R 10.21136/AM.1990.104397 %G en %F 10_21136_AM_1990_104397
Kojecký, Tomáš. Iterative solution of eigenvalue problems for normal operators. Applications of Mathematics, Tome 35 (1990) no. 2, pp. 158-161. doi : 10.21136/AM.1990.104397. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104397/
Cité par Sources :