Continuity of hysteresis operators in Sobolev spaces
Applications of Mathematics, Tome 35 (1990) no. 1, pp. 60-66.

Voir la notice de l'article dans Czech Digital Mathematics Library

We prove that the classical Prandtl, Ishlinskii and Preisach hysteresis operators are continuous in Sobolev spaces $W^{1,p}(0,T)$ for $1\leq p +\infty$, (localy) Lipschitz continuous in $W^{1,1}(0,T)$ and discontinuous in $W^{1,\infty}(0,T)$ for arbitrary $T>0$. Examples show that this result is optimal.
DOI : 10.21136/AM.1990.104387
Classification : 46E35, 47H30, 58C07, 73E50, 73E99, 74H15, 74H99
Mots-clés : hysteresis operators; Preisach operator; Ishlinskii operator
@article{10_21136_AM_1990_104387,
     author = {Krej\v{c}{\'\i}, Pavel and Lovicar, Vladim{\'\i}r},
     title = {Continuity of hysteresis operators in {Sobolev} spaces},
     journal = {Applications of Mathematics},
     pages = {60--66},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1990},
     doi = {10.21136/AM.1990.104387},
     mrnumber = {1039411},
     zbl = {0705.47054},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104387/}
}
TY  - JOUR
AU  - Krejčí, Pavel
AU  - Lovicar, Vladimír
TI  - Continuity of hysteresis operators in Sobolev spaces
JO  - Applications of Mathematics
PY  - 1990
SP  - 60
EP  - 66
VL  - 35
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104387/
DO  - 10.21136/AM.1990.104387
LA  - en
ID  - 10_21136_AM_1990_104387
ER  - 
%0 Journal Article
%A Krejčí, Pavel
%A Lovicar, Vladimír
%T Continuity of hysteresis operators in Sobolev spaces
%J Applications of Mathematics
%D 1990
%P 60-66
%V 35
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104387/
%R 10.21136/AM.1990.104387
%G en
%F 10_21136_AM_1990_104387
Krejčí, Pavel; Lovicar, Vladimír. Continuity of hysteresis operators in Sobolev spaces. Applications of Mathematics, Tome 35 (1990) no. 1, pp. 60-66. doi : 10.21136/AM.1990.104387. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104387/

Cité par Sources :