Discrete smoothing splines and digital filtration. Theory and applications
Applications of Mathematics, Tome 35 (1990) no. 1, pp. 28-50.
Voir la notice de l'article dans Czech Digital Mathematics Library
Two universally applicable smoothing operations adjustable to meet the specific properties of the given smoothing problem are widely used: 1. Smoothing splines and 2. Smoothing digital convolution filters. The first operation is related to the data vector $r={(r_0,..., r_{n-1})}^T$ with respect to the operations $\Cal{A}$, $\Cal{L}$ and to the smoothing parameter $\alpha$. The resulting function is denoted by $\sigma_\alpha(t)$. The measured sample $r$ is defined on an equally spaced mesh $\Delta=\{t_i=ih\}^{n-1}_{i=0}$ $T=nh$. The smoothed data vector $y$ is then $y=\{\sigma_\alpha(t_i)\}^{n-1}_{i=0}$. The other operation gives $y\in E^n$ computed by $\bold {y=h*r}$, where $\bold *$ stands for the discrete convolution, the running weighted mean by $h$. The main aims of the present contribution: to prove the existence of close interconnection between the two smoothing approaches (Cor. 2.6 and [11]), to develop the transfer function, which characterizes the smoothing spline as a filter in terms of $\alpha$ and $\lambda_{ik}$ (the eigenvalues of the discrete analogue of $Cal {L}$) (Th. 2.5), to develop the reduction ratio between the original and the smoothed data in the same terms (Th. 3.1).
DOI :
10.21136/AM.1990.104385
Classification :
41A15, 65D07, 65D10, 65K10, 93E11, 93E14
Mots-clés : discrete smoothing spline CDS-spline; smoothing parameter; digital convolution filter; transfer function; sinusoidal wave; saw-like waves; rectangular pulse train
Mots-clés : discrete smoothing spline CDS-spline; smoothing parameter; digital convolution filter; transfer function; sinusoidal wave; saw-like waves; rectangular pulse train
@article{10_21136_AM_1990_104385, author = {H\v{r}eb{\'\i}\v{c}ek, Ji\v{r}{\'\i} and \v{S}ik, Franti\v{s}ek and Vesel\'y, V{\'\i}t\v{e}zslav}, title = {Discrete smoothing splines and digital filtration. {Theory} and applications}, journal = {Applications of Mathematics}, pages = {28--50}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {1990}, doi = {10.21136/AM.1990.104385}, mrnumber = {1039409}, zbl = {0704.65005}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104385/} }
TY - JOUR AU - Hřebíček, Jiří AU - Šik, František AU - Veselý, Vítězslav TI - Discrete smoothing splines and digital filtration. Theory and applications JO - Applications of Mathematics PY - 1990 SP - 28 EP - 50 VL - 35 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104385/ DO - 10.21136/AM.1990.104385 LA - en ID - 10_21136_AM_1990_104385 ER -
%0 Journal Article %A Hřebíček, Jiří %A Šik, František %A Veselý, Vítězslav %T Discrete smoothing splines and digital filtration. Theory and applications %J Applications of Mathematics %D 1990 %P 28-50 %V 35 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104385/ %R 10.21136/AM.1990.104385 %G en %F 10_21136_AM_1990_104385
Hřebíček, Jiří; Šik, František; Veselý, Vítězslav. Discrete smoothing splines and digital filtration. Theory and applications. Applications of Mathematics, Tome 35 (1990) no. 1, pp. 28-50. doi : 10.21136/AM.1990.104385. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104385/
Cité par Sources :