Discrete smoothing splines and digital filtration. Theory and applications
Applications of Mathematics, Tome 35 (1990) no. 1, pp. 28-50.

Voir la notice de l'article dans Czech Digital Mathematics Library

Two universally applicable smoothing operations adjustable to meet the specific properties of the given smoothing problem are widely used: 1. Smoothing splines and 2. Smoothing digital convolution filters. The first operation is related to the data vector $r={(r_0,..., r_{n-1})}^T$ with respect to the operations $\Cal{A}$, $\Cal{L}$ and to the smoothing parameter $\alpha$. The resulting function is denoted by $\sigma_\alpha(t)$. The measured sample $r$ is defined on an equally spaced mesh $\Delta=\{t_i=ih\}^{n-1}_{i=0}$ $T=nh$. The smoothed data vector $y$ is then $y=\{\sigma_\alpha(t_i)\}^{n-1}_{i=0}$. The other operation gives $y\in E^n$ computed by $\bold {y=h*r}$, where $\bold *$ stands for the discrete convolution, the running weighted mean by $h$. The main aims of the present contribution: to prove the existence of close interconnection between the two smoothing approaches (Cor. 2.6 and [11]), to develop the transfer function, which characterizes the smoothing spline as a filter in terms of $\alpha$ and $\lambda_{ik}$ (the eigenvalues of the discrete analogue of $Cal {L}$) (Th. 2.5), to develop the reduction ratio between the original and the smoothed data in the same terms (Th. 3.1).
DOI : 10.21136/AM.1990.104385
Classification : 41A15, 65D07, 65D10, 65K10, 93E11, 93E14
Mots-clés : discrete smoothing spline CDS-spline; smoothing parameter; digital convolution filter; transfer function; sinusoidal wave; saw-like waves; rectangular pulse train
@article{10_21136_AM_1990_104385,
     author = {H\v{r}eb{\'\i}\v{c}ek, Ji\v{r}{\'\i} and \v{S}ik, Franti\v{s}ek and Vesel\'y, V{\'\i}t\v{e}zslav},
     title = {Discrete smoothing splines and digital filtration. {Theory} and applications},
     journal = {Applications of Mathematics},
     pages = {28--50},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1990},
     doi = {10.21136/AM.1990.104385},
     mrnumber = {1039409},
     zbl = {0704.65005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104385/}
}
TY  - JOUR
AU  - Hřebíček, Jiří
AU  - Šik, František
AU  - Veselý, Vítězslav
TI  - Discrete smoothing splines and digital filtration. Theory and applications
JO  - Applications of Mathematics
PY  - 1990
SP  - 28
EP  - 50
VL  - 35
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104385/
DO  - 10.21136/AM.1990.104385
LA  - en
ID  - 10_21136_AM_1990_104385
ER  - 
%0 Journal Article
%A Hřebíček, Jiří
%A Šik, František
%A Veselý, Vítězslav
%T Discrete smoothing splines and digital filtration. Theory and applications
%J Applications of Mathematics
%D 1990
%P 28-50
%V 35
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104385/
%R 10.21136/AM.1990.104385
%G en
%F 10_21136_AM_1990_104385
Hřebíček, Jiří; Šik, František; Veselý, Vítězslav. Discrete smoothing splines and digital filtration. Theory and applications. Applications of Mathematics, Tome 35 (1990) no. 1, pp. 28-50. doi : 10.21136/AM.1990.104385. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1990.104385/

Cité par Sources :