Convergence of $L_p$-norms of a matrix
Applications of Mathematics, Tome 30 (1985) no. 5, pp. 351-360.
Voir la notice de l'article dans Czech Digital Mathematics Library
a recurrence relation for computing the $L_p$-norms of an Hermitian matrix is derived and an expression giving approximately the number of eigenvalues which in absolute value are equal to the spectral radius is determined. Using the $L_p$-norms for the approximation of the spectral radius of an Hermitian matrix an a priori and a posteriori bounds for the error are obtained. Some properties of the a posteriori bound are discussed.
DOI :
10.21136/AM.1985.104162
Classification :
15A12, 15A42, 15A60, 65F15, 65F35
Mots-clés : convergence; $L_p$-norms; Hermitian matrix; spectral radius
Mots-clés : convergence; $L_p$-norms; Hermitian matrix; spectral radius
@article{10_21136_AM_1985_104162, author = {Stavinoha, Pavel}, title = {Convergence of $L_p$-norms of a matrix}, journal = {Applications of Mathematics}, pages = {351--360}, publisher = {mathdoc}, volume = {30}, number = {5}, year = {1985}, doi = {10.21136/AM.1985.104162}, mrnumber = {0806832}, zbl = {0609.65024}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104162/} }
TY - JOUR AU - Stavinoha, Pavel TI - Convergence of $L_p$-norms of a matrix JO - Applications of Mathematics PY - 1985 SP - 351 EP - 360 VL - 30 IS - 5 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104162/ DO - 10.21136/AM.1985.104162 LA - en ID - 10_21136_AM_1985_104162 ER -
Stavinoha, Pavel. Convergence of $L_p$-norms of a matrix. Applications of Mathematics, Tome 30 (1985) no. 5, pp. 351-360. doi : 10.21136/AM.1985.104162. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104162/
Cité par Sources :