On exponential approximation
Applications of Mathematics, Tome 30 (1985) no. 5, pp. 321-331.

Voir la notice de l'article dans Czech Digital Mathematics Library

One has to find a real function $y(x_1,x_2,\dots ,x_n)$ of variables $x_i$, $i=1,2,\dots,x_n). If the distribution of the values has an exponential character, then it is of advantage to choose the approximation function in the form $y(x;i)=\Pi^p_{j=0}a(i^j)^{\Pi(x_1,\dots,x_n)}$ which gives better results than other functions (e.g. polynomials). In this paper 3 methods are given: 1. The least squares method adapted for the exponential behaviour of the function. 2. The cumulated values method, following the so-called King's formula. 3. The polynomial method mentioned only for comparison. A numerical example is given in which the accuracy of all the three methods is compared.
DOI : 10.21136/AM.1985.104160
Classification : 41A30, 41A63
Mots-clés : exponential approximation
@article{10_21136_AM_1985_104160,
     author = {Hu\v{t}a, Anton},
     title = {On exponential approximation},
     journal = {Applications of Mathematics},
     pages = {321--331},
     publisher = {mathdoc},
     volume = {30},
     number = {5},
     year = {1985},
     doi = {10.21136/AM.1985.104160},
     mrnumber = {0806830},
     zbl = {0593.41017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104160/}
}
TY  - JOUR
AU  - Huťa, Anton
TI  - On exponential approximation
JO  - Applications of Mathematics
PY  - 1985
SP  - 321
EP  - 331
VL  - 30
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104160/
DO  - 10.21136/AM.1985.104160
LA  - en
ID  - 10_21136_AM_1985_104160
ER  - 
%0 Journal Article
%A Huťa, Anton
%T On exponential approximation
%J Applications of Mathematics
%D 1985
%P 321-331
%V 30
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104160/
%R 10.21136/AM.1985.104160
%G en
%F 10_21136_AM_1985_104160
Huťa, Anton. On exponential approximation. Applications of Mathematics, Tome 30 (1985) no. 5, pp. 321-331. doi : 10.21136/AM.1985.104160. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104160/

Cité par Sources :