Some distribution results on generalized ballot problems
Applications of Mathematics, Tome 30 (1985) no. 3, pp. 157-165.

Voir la notice de l'article dans Czech Digital Mathematics Library

Suppose that in a ballot candidate $A$ scores $a$ votes and candidate $B$ scores $b$ votes and that all possible $\left(\matrix {a+b} \\ a \endmatrix \right)$ voting sequences are equally probable. Denote by $\alpha_r$ and by $\beta_r$ the number of votes registered for $A$ and for $B$, respectively, among the first $r$ votes recorded, $r=1, \dots, a+b$. The purpose of this paper is to derive, for $a\geq b-c$, the probability distributions of the random variables defined as the number of subscripts $r=1, \dots, a+b$ for which (i) $\alpha_r=\beta_r-c$, (ii) $\alpha_r=\beta_r-c$ but $\alpha_{r-1}=\beta_{r-1}-c\pm 1$, (iii) $\alpha_r=\beta_r-c$ but $\alpha_{r-1}=\beta_{r-1}-c\pm 1$ and $\alpha_{r+1}=\beta_{r+1}-c\pm 1$, where $c=0,\pm 1, \pm 2, \dots$.
DOI : 10.21136/AM.1985.104138
Classification : 60C05, 60E99, 60J15
Mots-clés : ballot problem
@article{10_21136_AM_1985_104138,
     author = {Saran, Jagdish and Sen, Kanwar},
     title = {Some distribution results on generalized ballot problems},
     journal = {Applications of Mathematics},
     pages = {157--165},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1985},
     doi = {10.21136/AM.1985.104138},
     mrnumber = {0789857},
     zbl = {0575.60008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104138/}
}
TY  - JOUR
AU  - Saran, Jagdish
AU  - Sen, Kanwar
TI  - Some distribution results on generalized ballot problems
JO  - Applications of Mathematics
PY  - 1985
SP  - 157
EP  - 165
VL  - 30
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104138/
DO  - 10.21136/AM.1985.104138
LA  - en
ID  - 10_21136_AM_1985_104138
ER  - 
%0 Journal Article
%A Saran, Jagdish
%A Sen, Kanwar
%T Some distribution results on generalized ballot problems
%J Applications of Mathematics
%D 1985
%P 157-165
%V 30
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104138/
%R 10.21136/AM.1985.104138
%G en
%F 10_21136_AM_1985_104138
Saran, Jagdish; Sen, Kanwar. Some distribution results on generalized ballot problems. Applications of Mathematics, Tome 30 (1985) no. 3, pp. 157-165. doi : 10.21136/AM.1985.104138. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104138/

Cité par Sources :