Some distribution results on generalized ballot problems
Applications of Mathematics, Tome 30 (1985) no. 3, pp. 157-165.
Voir la notice de l'article dans Czech Digital Mathematics Library
Suppose that in a ballot candidate $A$ scores $a$ votes and candidate $B$ scores $b$ votes and that all possible $\left(\matrix {a+b} \\ a \endmatrix \right)$ voting sequences are equally probable. Denote by $\alpha_r$ and by $\beta_r$ the number of votes registered for $A$ and for $B$, respectively, among the first $r$ votes recorded, $r=1, \dots, a+b$. The purpose of this paper is to derive, for $a\geq b-c$, the probability distributions of the random variables defined as the number of subscripts $r=1, \dots, a+b$ for which (i) $\alpha_r=\beta_r-c$, (ii) $\alpha_r=\beta_r-c$ but $\alpha_{r-1}=\beta_{r-1}-c\pm 1$, (iii) $\alpha_r=\beta_r-c$ but $\alpha_{r-1}=\beta_{r-1}-c\pm 1$ and $\alpha_{r+1}=\beta_{r+1}-c\pm 1$, where $c=0,\pm 1, \pm 2, \dots$.
@article{10_21136_AM_1985_104138, author = {Saran, Jagdish and Sen, Kanwar}, title = {Some distribution results on generalized ballot problems}, journal = {Applications of Mathematics}, pages = {157--165}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {1985}, doi = {10.21136/AM.1985.104138}, mrnumber = {0789857}, zbl = {0575.60008}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104138/} }
TY - JOUR AU - Saran, Jagdish AU - Sen, Kanwar TI - Some distribution results on generalized ballot problems JO - Applications of Mathematics PY - 1985 SP - 157 EP - 165 VL - 30 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104138/ DO - 10.21136/AM.1985.104138 LA - en ID - 10_21136_AM_1985_104138 ER -
%0 Journal Article %A Saran, Jagdish %A Sen, Kanwar %T Some distribution results on generalized ballot problems %J Applications of Mathematics %D 1985 %P 157-165 %V 30 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104138/ %R 10.21136/AM.1985.104138 %G en %F 10_21136_AM_1985_104138
Saran, Jagdish; Sen, Kanwar. Some distribution results on generalized ballot problems. Applications of Mathematics, Tome 30 (1985) no. 3, pp. 157-165. doi : 10.21136/AM.1985.104138. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1985.104138/
Cité par Sources :