The complexity of lexicographic sorting and searching
Applications of Mathematics, Tome 26 (1981) no. 6, pp. 432-436.
Voir la notice de l'article dans Czech Digital Mathematics Library
An asymptotically optimal sorting algorithm that uses $\Theta (n(log\ n+k))$ component comparisons to lexicographically sort the set of $n$ $k$-tuples is presented. This sorting algorithm builds the static data structure - the so called optimal lexicographic search tree - in which it is possible to perform member searching for an unknown $k$-tuple in at most $[(log_2(n+1)]+k-1$ comparisons. The number of comparisons used by this search algorithm is optimal.
DOI :
10.21136/AM.1981.103933
Classification :
68C25, 68E05, 68P10
Mots-clés : asymptotically optimal sorting algorithm; static data structure; lexicographic search tree
Mots-clés : asymptotically optimal sorting algorithm; static data structure; lexicographic search tree
@article{10_21136_AM_1981_103933, author = {Wiedermann, Juraj}, title = {The complexity of lexicographic sorting and searching}, journal = {Applications of Mathematics}, pages = {432--436}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {1981}, doi = {10.21136/AM.1981.103933}, mrnumber = {0634280}, zbl = {0467.68057}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1981.103933/} }
TY - JOUR AU - Wiedermann, Juraj TI - The complexity of lexicographic sorting and searching JO - Applications of Mathematics PY - 1981 SP - 432 EP - 436 VL - 26 IS - 6 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1981.103933/ DO - 10.21136/AM.1981.103933 LA - en ID - 10_21136_AM_1981_103933 ER -
Wiedermann, Juraj. The complexity of lexicographic sorting and searching. Applications of Mathematics, Tome 26 (1981) no. 6, pp. 432-436. doi : 10.21136/AM.1981.103933. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1981.103933/
Cité par Sources :