Nonlinear elliptic problems with jumping nonlinearities near the first eigenvalue
Applications of Mathematics, Tome 26 (1981) no. 4, pp. 304-311.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper existence and multiplicity of solutions of the elliptic problem $\Cal L u + \lambda_1u+\mu u^+vu^-+g(x,u)=f$ in $\Omega$ $Bu=0$ on $\partial\Omega$, are discussed provided the parameters $\mu$ and $v$ are close to the first eigenvalue $\lamda_1$. The sufficient conditions presented here are more general than those in given by S. Fučík in his aerlier paper.
DOI :
10.21136/AM.1981.103919
Classification :
35J60, 47J05, 73C50
Mots-clés : multiplicity of solutions; weakly nonlinear elliptic equations
Mots-clés : multiplicity of solutions; weakly nonlinear elliptic equations
@article{10_21136_AM_1981_103919, author = {Dr\'abek, Pavel}, title = {Nonlinear elliptic problems with jumping nonlinearities near the first eigenvalue}, journal = {Applications of Mathematics}, pages = {304--311}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {1981}, doi = {10.21136/AM.1981.103919}, mrnumber = {0623508}, zbl = {0469.35051}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1981.103919/} }
TY - JOUR AU - Drábek, Pavel TI - Nonlinear elliptic problems with jumping nonlinearities near the first eigenvalue JO - Applications of Mathematics PY - 1981 SP - 304 EP - 311 VL - 26 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1981.103919/ DO - 10.21136/AM.1981.103919 LA - en ID - 10_21136_AM_1981_103919 ER -
%0 Journal Article %A Drábek, Pavel %T Nonlinear elliptic problems with jumping nonlinearities near the first eigenvalue %J Applications of Mathematics %D 1981 %P 304-311 %V 26 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1981.103919/ %R 10.21136/AM.1981.103919 %G en %F 10_21136_AM_1981_103919
Drábek, Pavel. Nonlinear elliptic problems with jumping nonlinearities near the first eigenvalue. Applications of Mathematics, Tome 26 (1981) no. 4, pp. 304-311. doi : 10.21136/AM.1981.103919. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1981.103919/
Cité par Sources :