On determination of eigenvalues and eigenvectors of selfadjoint operators
Applications of Mathematics, Tome 26 (1981) no. 3, pp. 161-170.

Voir la notice de l'article dans Czech Digital Mathematics Library

Two simple methods for approximate determination of eigenvalues and eigenvectors of linear self-adjoint operators are considered in the following two cases: (i) lower-upper bound $\lambda _1$ of the spectrum $\sigma (A)$ of $A$ is an isolated point of $\sigma (A)$; (ii) $\lambda _1$ (not necessarily an isolated point of $\sigma (A)$ with finite multiplicity) is an eigenvalue of $A$.
DOI : 10.21136/AM.1981.103908
Classification : 47A10, 47A70, 47B25, 49G20, 65J10
Mots-clés : eigenvalues; eigenvectors; self-adjoint operators; spectrum
@article{10_21136_AM_1981_103908,
     author = {Kolom\'y, Josef},
     title = {On determination of eigenvalues and eigenvectors of selfadjoint operators},
     journal = {Applications of Mathematics},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1981},
     doi = {10.21136/AM.1981.103908},
     mrnumber = {0615603},
     zbl = {0469.65033},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1981.103908/}
}
TY  - JOUR
AU  - Kolomý, Josef
TI  - On determination of eigenvalues and eigenvectors of selfadjoint operators
JO  - Applications of Mathematics
PY  - 1981
SP  - 161
EP  - 170
VL  - 26
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1981.103908/
DO  - 10.21136/AM.1981.103908
LA  - en
ID  - 10_21136_AM_1981_103908
ER  - 
%0 Journal Article
%A Kolomý, Josef
%T On determination of eigenvalues and eigenvectors of selfadjoint operators
%J Applications of Mathematics
%D 1981
%P 161-170
%V 26
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1981.103908/
%R 10.21136/AM.1981.103908
%G en
%F 10_21136_AM_1981_103908
Kolomý, Josef. On determination of eigenvalues and eigenvectors of selfadjoint operators. Applications of Mathematics, Tome 26 (1981) no. 3, pp. 161-170. doi : 10.21136/AM.1981.103908. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1981.103908/

Cité par Sources :