Tables for the two-sample Haga test of location
Applications of Mathematics, Tome 23 (1978) no. 4, pp. 237-247.
Voir la notice de l'article dans Czech Digital Mathematics Library
The rank statistic $H$ based on the number of exceeding observations in two samples is suitable for testing difference in location of two samples. This paper contains tables of one-sides significance levels $P\{H\geq k\}$ for $k=7,8,\ldots, 11; max (2,n-10)$, which includes almost all practically used significance levels for $3\leq m \leq n \leq 25$, where $m,n$ are the sample sizes.
DOI :
10.21136/AM.1978.103750
Classification :
62G10, 62Q05
Mots-clés : tables; two-sample Haga test of location
Mots-clés : tables; two-sample Haga test of location
@article{10_21136_AM_1978_103750, author = {Hojek, Stanislav}, title = {Tables for the two-sample {Haga} test of location}, journal = {Applications of Mathematics}, pages = {237--247}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {1978}, doi = {10.21136/AM.1978.103750}, mrnumber = {0501560}, zbl = {0402.62087}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1978.103750/} }
TY - JOUR AU - Hojek, Stanislav TI - Tables for the two-sample Haga test of location JO - Applications of Mathematics PY - 1978 SP - 237 EP - 247 VL - 23 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1978.103750/ DO - 10.21136/AM.1978.103750 LA - en ID - 10_21136_AM_1978_103750 ER -
Hojek, Stanislav. Tables for the two-sample Haga test of location. Applications of Mathematics, Tome 23 (1978) no. 4, pp. 237-247. doi : 10.21136/AM.1978.103750. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1978.103750/
Cité par Sources :