Tables for the two-sample Haga test of location
Applications of Mathematics, Tome 23 (1978) no. 4, pp. 237-247.

Voir la notice de l'article dans Czech Digital Mathematics Library

The rank statistic $H$ based on the number of exceeding observations in two samples is suitable for testing difference in location of two samples. This paper contains tables of one-sides significance levels $P\{H\geq k\}$ for $k=7,8,\ldots, 11; max (2,n-10)$, which includes almost all practically used significance levels for $3\leq m \leq n \leq 25$, where $m,n$ are the sample sizes.
DOI : 10.21136/AM.1978.103750
Classification : 62G10, 62Q05
Mots-clés : tables; two-sample Haga test of location
@article{10_21136_AM_1978_103750,
     author = {Hojek, Stanislav},
     title = {Tables for the two-sample {Haga} test of location},
     journal = {Applications of Mathematics},
     pages = {237--247},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     doi = {10.21136/AM.1978.103750},
     mrnumber = {0501560},
     zbl = {0402.62087},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1978.103750/}
}
TY  - JOUR
AU  - Hojek, Stanislav
TI  - Tables for the two-sample Haga test of location
JO  - Applications of Mathematics
PY  - 1978
SP  - 237
EP  - 247
VL  - 23
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1978.103750/
DO  - 10.21136/AM.1978.103750
LA  - en
ID  - 10_21136_AM_1978_103750
ER  - 
%0 Journal Article
%A Hojek, Stanislav
%T Tables for the two-sample Haga test of location
%J Applications of Mathematics
%D 1978
%P 237-247
%V 23
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1978.103750/
%R 10.21136/AM.1978.103750
%G en
%F 10_21136_AM_1978_103750
Hojek, Stanislav. Tables for the two-sample Haga test of location. Applications of Mathematics, Tome 23 (1978) no. 4, pp. 237-247. doi : 10.21136/AM.1978.103750. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1978.103750/

Cité par Sources :