A parallel projection method for linear algebraic systems
Applications of Mathematics, Tome 23 (1978) no. 3, pp. 185-198.

Voir la notice de l'article dans Czech Digital Mathematics Library

A direct projection method for solving systems of linear algebraic equations is described. The algorithm is equivalent to the algorithm for minimization of the corresponding quadratic function and can be generalized for the minimization of a strictly convex function.
DOI : 10.21136/AM.1978.103744
Classification : 65F10, 65F20, 65F25, 65H10, 93C99
Mots-clés : projection method; linear algebraic equations; elimination; orthogonalization; conjugate direction methodds; nonlinear equations; iterative methods for linear systems
@article{10_21136_AM_1978_103744,
     author = {Sloboda, Fridrich},
     title = {A parallel projection method for linear algebraic systems},
     journal = {Applications of Mathematics},
     pages = {185--198},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1978},
     doi = {10.21136/AM.1978.103744},
     mrnumber = {0490260},
     zbl = {0398.65013},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1978.103744/}
}
TY  - JOUR
AU  - Sloboda, Fridrich
TI  - A parallel projection method for linear algebraic systems
JO  - Applications of Mathematics
PY  - 1978
SP  - 185
EP  - 198
VL  - 23
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1978.103744/
DO  - 10.21136/AM.1978.103744
LA  - en
ID  - 10_21136_AM_1978_103744
ER  - 
%0 Journal Article
%A Sloboda, Fridrich
%T A parallel projection method for linear algebraic systems
%J Applications of Mathematics
%D 1978
%P 185-198
%V 23
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1978.103744/
%R 10.21136/AM.1978.103744
%G en
%F 10_21136_AM_1978_103744
Sloboda, Fridrich. A parallel projection method for linear algebraic systems. Applications of Mathematics, Tome 23 (1978) no. 3, pp. 185-198. doi : 10.21136/AM.1978.103744. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1978.103744/

Cité par Sources :