On two-dimensional and three dimensional axially-symmetric rotational flows of an ideal incompressible fluid
Applications of Mathematics, Tome 22 (1977) no. 3, pp. 199-214.

Voir la notice de l'article dans Czech Digital Mathematics Library

Yhe problem mentioned in the title is studied with help of the stream function and transformed to the boundary value problem for a quasilinear equation. The existence of the solution is proved and the problem of the uniqueness of the solution is discussed.
DOI : 10.21136/AM.1977.103693
Classification : 35A05, 76B47, 76U05
@article{10_21136_AM_1977_103693,
     author = {Feistauer, Miloslav},
     title = {On two-dimensional and three dimensional axially-symmetric rotational flows of an ideal incompressible fluid},
     journal = {Applications of Mathematics},
     pages = {199--214},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1977},
     doi = {10.21136/AM.1977.103693},
     mrnumber = {0436748},
     zbl = {0373.76022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103693/}
}
TY  - JOUR
AU  - Feistauer, Miloslav
TI  - On two-dimensional and three dimensional axially-symmetric rotational flows of an ideal incompressible fluid
JO  - Applications of Mathematics
PY  - 1977
SP  - 199
EP  - 214
VL  - 22
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103693/
DO  - 10.21136/AM.1977.103693
LA  - en
ID  - 10_21136_AM_1977_103693
ER  - 
%0 Journal Article
%A Feistauer, Miloslav
%T On two-dimensional and three dimensional axially-symmetric rotational flows of an ideal incompressible fluid
%J Applications of Mathematics
%D 1977
%P 199-214
%V 22
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103693/
%R 10.21136/AM.1977.103693
%G en
%F 10_21136_AM_1977_103693
Feistauer, Miloslav. On two-dimensional and three dimensional axially-symmetric rotational flows of an ideal incompressible fluid. Applications of Mathematics, Tome 22 (1977) no. 3, pp. 199-214. doi : 10.21136/AM.1977.103693. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103693/

Cité par Sources :