On two-dimensional and three dimensional axially-symmetric rotational flows of an ideal incompressible fluid
Applications of Mathematics, Tome 22 (1977) no. 3, pp. 199-214.
Voir la notice de l'article dans Czech Digital Mathematics Library
Yhe problem mentioned in the title is studied with help of the stream function and transformed to the boundary value problem for a quasilinear equation. The existence of the solution is proved and the problem of the uniqueness of the solution is discussed.
@article{10_21136_AM_1977_103693, author = {Feistauer, Miloslav}, title = {On two-dimensional and three dimensional axially-symmetric rotational flows of an ideal incompressible fluid}, journal = {Applications of Mathematics}, pages = {199--214}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {1977}, doi = {10.21136/AM.1977.103693}, mrnumber = {0436748}, zbl = {0373.76022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103693/} }
TY - JOUR AU - Feistauer, Miloslav TI - On two-dimensional and three dimensional axially-symmetric rotational flows of an ideal incompressible fluid JO - Applications of Mathematics PY - 1977 SP - 199 EP - 214 VL - 22 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103693/ DO - 10.21136/AM.1977.103693 LA - en ID - 10_21136_AM_1977_103693 ER -
%0 Journal Article %A Feistauer, Miloslav %T On two-dimensional and three dimensional axially-symmetric rotational flows of an ideal incompressible fluid %J Applications of Mathematics %D 1977 %P 199-214 %V 22 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103693/ %R 10.21136/AM.1977.103693 %G en %F 10_21136_AM_1977_103693
Feistauer, Miloslav. On two-dimensional and three dimensional axially-symmetric rotational flows of an ideal incompressible fluid. Applications of Mathematics, Tome 22 (1977) no. 3, pp. 199-214. doi : 10.21136/AM.1977.103693. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103693/
Cité par Sources :