Schrödinger eigenvalue problem for the Gaussian potential
Applications of Mathematics, Tome 22 (1977) no. 3, pp. 189-198.
Voir la notice de l'article dans Czech Digital Mathematics Library
The radial Schrödinger equation with an attractive Gaussian potential and a general angular momentum is transformed by means of the modified Laplace transformation into a linear homogeneous differential equation of the first order with one "retarded" argument. Owing to the fusion of the arguments at the point $z=0$ its integration is possible by an iteration procedure. The discrete spectrum differs from the continuous one by the boundary condition at $z=\infty$ which determines the explicit equation for the energy eigenvalues. The properties of the resolvent are investigated in detail on the real half-axis and various approximations are dicussed.
@article{10_21136_AM_1977_103692, author = {Trlifaj, Ladislav}, title = {Schr\"odinger eigenvalue problem for the {Gaussian} potential}, journal = {Applications of Mathematics}, pages = {189--198}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {1977}, doi = {10.21136/AM.1977.103692}, mrnumber = {0447783}, zbl = {0372.34016}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103692/} }
TY - JOUR AU - Trlifaj, Ladislav TI - Schrödinger eigenvalue problem for the Gaussian potential JO - Applications of Mathematics PY - 1977 SP - 189 EP - 198 VL - 22 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103692/ DO - 10.21136/AM.1977.103692 LA - en ID - 10_21136_AM_1977_103692 ER -
%0 Journal Article %A Trlifaj, Ladislav %T Schrödinger eigenvalue problem for the Gaussian potential %J Applications of Mathematics %D 1977 %P 189-198 %V 22 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103692/ %R 10.21136/AM.1977.103692 %G en %F 10_21136_AM_1977_103692
Trlifaj, Ladislav. Schrödinger eigenvalue problem for the Gaussian potential. Applications of Mathematics, Tome 22 (1977) no. 3, pp. 189-198. doi : 10.21136/AM.1977.103692. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103692/
Cité par Sources :