Tables for the two-sample location $E$-test based on exceeding observations
Applications of Mathematics, Tome 22 (1977) no. 3, pp. 166-175.
Voir la notice de l'article dans Czech Digital Mathematics Library
The rank statistic $E$, based on the minimum number of exceeding observations in two samples, gives rise to a quick and easy $E$-test, which is suitable for the two-sample location problem. The paper contains tables of the one-sided significance levels $P\left\{E\geq k\right\}$ for $2\leq k\leq 6$ for sizes $m,n$ of the two samples satisfying $3\leq m\leq n\leq 25$.
@article{10_21136_AM_1977_103689, author = {\v{S}id\'ak, Zbyn\v{e}k}, title = {Tables for the two-sample location $E$-test based on exceeding observations}, journal = {Applications of Mathematics}, pages = {166--175}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {1977}, doi = {10.21136/AM.1977.103689}, mrnumber = {0440791}, zbl = {0372.62100}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103689/} }
TY - JOUR AU - Šidák, Zbyněk TI - Tables for the two-sample location $E$-test based on exceeding observations JO - Applications of Mathematics PY - 1977 SP - 166 EP - 175 VL - 22 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103689/ DO - 10.21136/AM.1977.103689 LA - en ID - 10_21136_AM_1977_103689 ER -
%0 Journal Article %A Šidák, Zbyněk %T Tables for the two-sample location $E$-test based on exceeding observations %J Applications of Mathematics %D 1977 %P 166-175 %V 22 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103689/ %R 10.21136/AM.1977.103689 %G en %F 10_21136_AM_1977_103689
Šidák, Zbyněk. Tables for the two-sample location $E$-test based on exceeding observations. Applications of Mathematics, Tome 22 (1977) no. 3, pp. 166-175. doi : 10.21136/AM.1977.103689. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103689/
Cité par Sources :