Approximate methods for solving differential equations on infinite interval
Applications of Mathematics, Tome 22 (1977) no. 2, pp. 92-109.

Voir la notice de l'article dans Czech Digital Mathematics Library

Two approximate methods of solving a linear boundary value problem on an infinite interval are presented. The first one consists in approximating the solution by a sequence of solutions of boundary value problems on finite intervals. The second method is a modified collocation method. The existence of a solution and the convergence of the methods presented is proved.
DOI : 10.21136/AM.1977.103681
Classification : 65L10, 65R20
@article{10_21136_AM_1977_103681,
     author = {Regi\'nska, Teresa},
     title = {Approximate methods for solving differential equations on infinite interval},
     journal = {Applications of Mathematics},
     pages = {92--109},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     doi = {10.21136/AM.1977.103681},
     mrnumber = {0433900},
     zbl = {0369.65021},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103681/}
}
TY  - JOUR
AU  - Regińska, Teresa
TI  - Approximate methods for solving differential equations on infinite interval
JO  - Applications of Mathematics
PY  - 1977
SP  - 92
EP  - 109
VL  - 22
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103681/
DO  - 10.21136/AM.1977.103681
LA  - en
ID  - 10_21136_AM_1977_103681
ER  - 
%0 Journal Article
%A Regińska, Teresa
%T Approximate methods for solving differential equations on infinite interval
%J Applications of Mathematics
%D 1977
%P 92-109
%V 22
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103681/
%R 10.21136/AM.1977.103681
%G en
%F 10_21136_AM_1977_103681
Regińska, Teresa. Approximate methods for solving differential equations on infinite interval. Applications of Mathematics, Tome 22 (1977) no. 2, pp. 92-109. doi : 10.21136/AM.1977.103681. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1977.103681/

Cité par Sources :