The Bayes approach in multiple autoregressive series
Applications of Mathematics, Tome 16 (1971) no. 3, pp. 220-228.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $X_1,\ldots,X_N$ be a finite part of the normal $p$-dimensional autoregressive series generated by $\sum^n_{k=1} A_kX_{t-k}=\zeta_t$ where random vectors $\zeta_t$ are uncorrelated and each of them has the unit covariance matrix. The Bayes approach is applied to the problem of estimating the autoregressive parameters under condition that the matrix $A_0$ is diagonal. The "vague" prior distribution is supposed. It is proved that the point estimates coincide with the least squares estimates. The posterior distribution of these parameters is given in a simple form. The results are derived without the assumption that $\{X_t\}$ is the stationary series.
DOI : 10.21136/AM.1971.103348
Classification : 62H10
@article{10_21136_AM_1971_103348,
     author = {And\v{e}l, Ji\v{r}{\'\i}},
     title = {The {Bayes} approach in multiple autoregressive series},
     journal = {Applications of Mathematics},
     pages = {220--228},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1971},
     doi = {10.21136/AM.1971.103348},
     mrnumber = {0290498},
     zbl = {0231.62069},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103348/}
}
TY  - JOUR
AU  - Anděl, Jiří
TI  - The Bayes approach in multiple autoregressive series
JO  - Applications of Mathematics
PY  - 1971
SP  - 220
EP  - 228
VL  - 16
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103348/
DO  - 10.21136/AM.1971.103348
LA  - en
ID  - 10_21136_AM_1971_103348
ER  - 
%0 Journal Article
%A Anděl, Jiří
%T The Bayes approach in multiple autoregressive series
%J Applications of Mathematics
%D 1971
%P 220-228
%V 16
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103348/
%R 10.21136/AM.1971.103348
%G en
%F 10_21136_AM_1971_103348
Anděl, Jiří. The Bayes approach in multiple autoregressive series. Applications of Mathematics, Tome 16 (1971) no. 3, pp. 220-228. doi : 10.21136/AM.1971.103348. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103348/

Cité par Sources :