The Bayes approach in multiple autoregressive series
Applications of Mathematics, Tome 16 (1971) no. 3, pp. 220-228.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let X1,,XN be a finite part of the normal p-dimensional autoregressive series generated by k=1nAkXtk=ζt where random vectors ζt are uncorrelated and each of them has the unit covariance matrix. The Bayes approach is applied to the problem of estimating the autoregressive parameters under condition that the matrix A0 is diagonal. The "vague" prior distribution is supposed. It is proved that the point estimates coincide with the least squares estimates. The posterior distribution of these parameters is given in a simple form. The results are derived without the assumption that {Xt} is the stationary series.
DOI : 10.21136/AM.1971.103348
Classification : 62H10
@article{10_21136_AM_1971_103348,
     author = {And\v{e}l, Ji\v{r}{\'\i}},
     title = {The {Bayes} approach in multiple autoregressive series},
     journal = {Applications of Mathematics},
     pages = {220--228},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1971},
     doi = {10.21136/AM.1971.103348},
     mrnumber = {0290498},
     zbl = {0231.62069},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103348/}
}
TY  - JOUR
AU  - Anděl, Jiří
TI  - The Bayes approach in multiple autoregressive series
JO  - Applications of Mathematics
PY  - 1971
SP  - 220
EP  - 228
VL  - 16
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103348/
DO  - 10.21136/AM.1971.103348
LA  - en
ID  - 10_21136_AM_1971_103348
ER  - 
%0 Journal Article
%A Anděl, Jiří
%T The Bayes approach in multiple autoregressive series
%J Applications of Mathematics
%D 1971
%P 220-228
%V 16
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103348/
%R 10.21136/AM.1971.103348
%G en
%F 10_21136_AM_1971_103348
Anděl, Jiří. The Bayes approach in multiple autoregressive series. Applications of Mathematics, Tome 16 (1971) no. 3, pp. 220-228. doi : 10.21136/AM.1971.103348. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103348/

Cité par Sources :