Die allgemeine Lösung einer zylindrischen Differentialgleichung vierter Ordnung nullten Parameterwertes
Applications of Mathematics, Tome 16 (1971) no. 3, pp. 203-214.

Voir la notice de l'article dans Czech Digital Mathematics Library

The paper gives a comprehensive review of general solutions of the ordinary linear differential equation (1) $\Delta^2w+2\epsilon\Delta w+w=0, \ \Delta=d^2/d\rho^2+(1/\rho)(d/d\rho)$, the particular solution of which is represented by the Bessel function $w=Z_0(\rho\sqrt{\lambda})$of zero index with a real, imaginary or complex argument, respectively. In the case $\epsilon = \pm1$ the corresponding characteristic equation $\lambda^2 - 2\epsilon\lambda + 1=0$ evidently zields one double root $\lambda=\pm 1$; then another independent particular solution of Eq. (1) is represented by the function $w=\rho Z_1(\rho\sqrt{\pm 1})$. Generally it is proved that the general solution of a double Bessel equation of the $v$-th index (2) $[\Delta + \lambda - (v/\rho)^2]^2w=0$ can be written in the form $w=A_1J_v(\rho sqrt{\lambda})+A_2\rho J_{v+1}(\rho\sqrt{\lambda})+A_3Y_v(\rho\sqrt{\lambda})+A_4\rho Y_{v+1}(\rho\sqrt{\lambda})$ where $A_1$ to $A_4$ denote the constants of integration and $J_v(\rho \sqrt{\lambda}),\ Y_v(\rho \sqrt{\lambda})$ are the Bessel functions of the $v$-th index of the first and second kinds, respectively.
DOI : 10.21136/AM.1971.103346
Classification : 30D05, 34M99, 39B22, 39B32, 74Bxx
@article{10_21136_AM_1971_103346,
     author = {Panc, Vladim{\'\i}r},
     title = {Die allgemeine {L\"osung} einer zylindrischen {Differentialgleichung} vierter {Ordnung} nullten {Parameterwertes}},
     journal = {Applications of Mathematics},
     pages = {203--214},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1971},
     doi = {10.21136/AM.1971.103346},
     zbl = {0224.34008},
     language = {ge},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103346/}
}
TY  - JOUR
AU  - Panc, Vladimír
TI  - Die allgemeine Lösung einer zylindrischen Differentialgleichung vierter Ordnung nullten Parameterwertes
JO  - Applications of Mathematics
PY  - 1971
SP  - 203
EP  - 214
VL  - 16
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103346/
DO  - 10.21136/AM.1971.103346
LA  - ge
ID  - 10_21136_AM_1971_103346
ER  - 
%0 Journal Article
%A Panc, Vladimír
%T Die allgemeine Lösung einer zylindrischen Differentialgleichung vierter Ordnung nullten Parameterwertes
%J Applications of Mathematics
%D 1971
%P 203-214
%V 16
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103346/
%R 10.21136/AM.1971.103346
%G ge
%F 10_21136_AM_1971_103346
Panc, Vladimír. Die allgemeine Lösung einer zylindrischen Differentialgleichung vierter Ordnung nullten Parameterwertes. Applications of Mathematics, Tome 16 (1971) no. 3, pp. 203-214. doi : 10.21136/AM.1971.103346. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103346/

Cité par Sources :