On multiple normal probabilities of rectangles
Applications of Mathematics, Tome 16 (1971) no. 3, pp. 172-181.

Voir la notice de l'article dans Czech Digital Mathematics Library

Denote $A$ a symmetric interval in the $n$-dimensional Euclidean space. Let the random vector $X$ have $n$-dimensional normal distribution with vanishing expectation and regular covariance matrix. A method for the numerical evaluation of the probability $P(A)=P(X\in A)$ is suggested in the paper. $P(A)$ is expressed as the sum of an infinite series. The bounds for the remainder term are given. The rate of convergence is analysed in detail in the twodimensional case. Two numerical examples are given to compare derived results with other methods.
DOI : 10.21136/AM.1971.103343
Classification : 62H99
@article{10_21136_AM_1971_103343,
     author = {And\v{e}l, Ji\v{r}{\'\i}},
     title = {On multiple normal probabilities of rectangles},
     journal = {Applications of Mathematics},
     pages = {172--181},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1971},
     doi = {10.21136/AM.1971.103343},
     mrnumber = {0285061},
     zbl = {0223.62080},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103343/}
}
TY  - JOUR
AU  - Anděl, Jiří
TI  - On multiple normal probabilities of rectangles
JO  - Applications of Mathematics
PY  - 1971
SP  - 172
EP  - 181
VL  - 16
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103343/
DO  - 10.21136/AM.1971.103343
LA  - en
ID  - 10_21136_AM_1971_103343
ER  - 
%0 Journal Article
%A Anděl, Jiří
%T On multiple normal probabilities of rectangles
%J Applications of Mathematics
%D 1971
%P 172-181
%V 16
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103343/
%R 10.21136/AM.1971.103343
%G en
%F 10_21136_AM_1971_103343
Anděl, Jiří. On multiple normal probabilities of rectangles. Applications of Mathematics, Tome 16 (1971) no. 3, pp. 172-181. doi : 10.21136/AM.1971.103343. https://geodesic-test.mathdoc.fr/articles/10.21136/AM.1971.103343/

Cité par Sources :