Existence of solutions for a nonlinear hyperbolic-parabolic equation in a non-cylinder domain.
International Journal of Mathematics and Mathematical Sciences, Tome 19 (1996) no. 1, p. 151.
Voir la notice de l'article dans European Digital Mathematics Library
DOI :
10.1155/S0161171296000221
Classification :
35L80, 35M10
Mots-clés : non-cylinder domain, penalization technique, hyperbolic-parabolic equation
Mots-clés : non-cylinder domain, penalization technique, hyperbolic-parabolic equation
@article{10_1155_S0161171296000221, author = {Clark, Marcondes Rodrigues}, title = {Existence of solutions for a nonlinear hyperbolic-parabolic equation in a non-cylinder domain.}, journal = {International Journal of Mathematics and Mathematical Sciences}, pages = {151}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {1996}, doi = {10.1155/S0161171296000221}, zbl = {0842.35062}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171296000221/} }
TY - JOUR AU - Clark, Marcondes Rodrigues TI - Existence of solutions for a nonlinear hyperbolic-parabolic equation in a non-cylinder domain. JO - International Journal of Mathematics and Mathematical Sciences PY - 1996 SP - 151 VL - 19 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171296000221/ DO - 10.1155/S0161171296000221 LA - en ID - 10_1155_S0161171296000221 ER -
%0 Journal Article %A Clark, Marcondes Rodrigues %T Existence of solutions for a nonlinear hyperbolic-parabolic equation in a non-cylinder domain. %J International Journal of Mathematics and Mathematical Sciences %D 1996 %P 151 %V 19 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171296000221/ %R 10.1155/S0161171296000221 %G en %F 10_1155_S0161171296000221
Clark, Marcondes Rodrigues. Existence of solutions for a nonlinear hyperbolic-parabolic equation in a non-cylinder domain.. International Journal of Mathematics and Mathematical Sciences, Tome 19 (1996) no. 1, p. 151. doi : 10.1155/S0161171296000221. https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171296000221/
Cité par Sources :