Powersum formula for polynomials whose distinct roots are differentially independent over constants.
International Journal of Mathematics and Mathematical Sciences, Tome 32 (2002) no. 12, p. 721.

Voir la notice de l'article dans European Digital Mathematics Library

DOI : 10.1155/S0161171202202331
Classification : 13N15, 12H05
Mots-clés : powersum formula, resolvent, differential field of characteristic zero
@article{10_1155_S0161171202202331,
     author = {Nahay, John Michael},
     title = {Powersum formula for polynomials whose distinct roots are differentially independent over constants.},
     journal = {International Journal of Mathematics and Mathematical Sciences},
     pages = {721},
     publisher = {mathdoc},
     volume = {32},
     number = {12},
     year = {2002},
     doi = {10.1155/S0161171202202331},
     zbl = {1021.12005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171202202331/}
}
TY  - JOUR
AU  - Nahay, John Michael
TI  - Powersum formula for polynomials whose distinct roots are differentially independent over constants.
JO  - International Journal of Mathematics and Mathematical Sciences
PY  - 2002
SP  - 721
VL  - 32
IS  - 12
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171202202331/
DO  - 10.1155/S0161171202202331
LA  - en
ID  - 10_1155_S0161171202202331
ER  - 
%0 Journal Article
%A Nahay, John Michael
%T Powersum formula for polynomials whose distinct roots are differentially independent over constants.
%J International Journal of Mathematics and Mathematical Sciences
%D 2002
%P 721
%V 32
%N 12
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171202202331/
%R 10.1155/S0161171202202331
%G en
%F 10_1155_S0161171202202331
Nahay, John Michael. Powersum formula for polynomials whose distinct roots are differentially independent over constants.. International Journal of Mathematics and Mathematical Sciences, Tome 32 (2002) no. 12, p. 721. doi : 10.1155/S0161171202202331. https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171202202331/

Cité par Sources :