Powersum formula for polynomials whose distinct roots are differentially independent over constants.
International Journal of Mathematics and Mathematical Sciences, Tome 32 (2002) no. 12, p. 721.
Voir la notice de l'article dans European Digital Mathematics Library
DOI :
10.1155/S0161171202202331
Classification :
13N15, 12H05
Mots-clés : powersum formula, resolvent, differential field of characteristic zero
Mots-clés : powersum formula, resolvent, differential field of characteristic zero
@article{10_1155_S0161171202202331, author = {Nahay, John Michael}, title = {Powersum formula for polynomials whose distinct roots are differentially independent over constants.}, journal = {International Journal of Mathematics and Mathematical Sciences}, pages = {721}, publisher = {mathdoc}, volume = {32}, number = {12}, year = {2002}, doi = {10.1155/S0161171202202331}, zbl = {1021.12005}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171202202331/} }
TY - JOUR AU - Nahay, John Michael TI - Powersum formula for polynomials whose distinct roots are differentially independent over constants. JO - International Journal of Mathematics and Mathematical Sciences PY - 2002 SP - 721 VL - 32 IS - 12 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171202202331/ DO - 10.1155/S0161171202202331 LA - en ID - 10_1155_S0161171202202331 ER -
%0 Journal Article %A Nahay, John Michael %T Powersum formula for polynomials whose distinct roots are differentially independent over constants. %J International Journal of Mathematics and Mathematical Sciences %D 2002 %P 721 %V 32 %N 12 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171202202331/ %R 10.1155/S0161171202202331 %G en %F 10_1155_S0161171202202331
Nahay, John Michael. Powersum formula for polynomials whose distinct roots are differentially independent over constants.. International Journal of Mathematics and Mathematical Sciences, Tome 32 (2002) no. 12, p. 721. doi : 10.1155/S0161171202202331. https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171202202331/
Cité par Sources :