Matrix theoretic interpretation of the classical Markoff theory. (L'interprétation matricielle de la théorie de Markoff classique.)
International Journal of Mathematics and Mathematical Sciences, Tome 32 (2002) no. 4, p. 193.

Voir la notice de l'article dans European Digital Mathematics Library

DOI : 10.1155/S0161171202012875
Classification : 20E05, 11J06, 11D25, 11H50, 11H55, 20F05, 20F12, 20F28
Mots-clés : continued fractions, free groups, minima of forms
@article{10_1155_S0161171202012875,
     author = {Perrine, Serge},
     title = {Matrix theoretic interpretation of the classical {Markoff} theory. {(L'interpr\'etation} matricielle de la th\'eorie de {Markoff} classique.)},
     journal = {International Journal of Mathematics and Mathematical Sciences},
     pages = {193},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2002},
     doi = {10.1155/S0161171202012875},
     zbl = {1017.11033},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171202012875/}
}
TY  - JOUR
AU  - Perrine, Serge
TI  - Matrix theoretic interpretation of the classical Markoff theory. (L'interprétation matricielle de la théorie de Markoff classique.)
JO  - International Journal of Mathematics and Mathematical Sciences
PY  - 2002
SP  - 193
VL  - 32
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171202012875/
DO  - 10.1155/S0161171202012875
LA  - en
ID  - 10_1155_S0161171202012875
ER  - 
%0 Journal Article
%A Perrine, Serge
%T Matrix theoretic interpretation of the classical Markoff theory. (L'interprétation matricielle de la théorie de Markoff classique.)
%J International Journal of Mathematics and Mathematical Sciences
%D 2002
%P 193
%V 32
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171202012875/
%R 10.1155/S0161171202012875
%G en
%F 10_1155_S0161171202012875
Perrine, Serge. Matrix theoretic interpretation of the classical Markoff theory. (L'interprétation matricielle de la théorie de Markoff classique.). International Journal of Mathematics and Mathematical Sciences, Tome 32 (2002) no. 4, p. 193. doi : 10.1155/S0161171202012875. https://geodesic-test.mathdoc.fr/articles/10.1155/S0161171202012875/

Cité par Sources :